{"title":"Using prior-data conflict to tune Bayesian regularized regression models.","authors":"Timofei Biziaev, Karen Kopciuk, Thierry Chekouo","doi":"10.1007/s11222-025-10582-1","DOIUrl":null,"url":null,"abstract":"<p><p>In high-dimensional regression models, variable selection becomes challenging from a computational and theoretical perspective. Bayesian regularized regression via shrinkage priors like the Laplace or spike-and-slab prior are effective methods for variable selection in <math><mrow><mi>p</mi> <mo>></mo> <mi>n</mi></mrow> </math> scenarios provided the shrinkage priors are configured adequately. We propose an empirical Bayes configuration using checks for prior-data conflict: tests that assess whether there is disagreement in parameter information provided by the prior and data. We apply our proposed method to the Bayesian LASSO and spike-and-slab shrinkage priors in the linear regression model and assess the variable selection performance of our prior configurations through a high-dimensional simulation study. Additionally, we apply our method to proteomic data collected from patients admitted to the Albany Medical Center in Albany NY in April of 2020 with COVID-like respiratory issues. Simulation results suggest our proposed configurations may outperform competing models when the true regression effects are small.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11222-025-10582-1.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":"35 2","pages":"53"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842445/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-025-10582-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In high-dimensional regression models, variable selection becomes challenging from a computational and theoretical perspective. Bayesian regularized regression via shrinkage priors like the Laplace or spike-and-slab prior are effective methods for variable selection in scenarios provided the shrinkage priors are configured adequately. We propose an empirical Bayes configuration using checks for prior-data conflict: tests that assess whether there is disagreement in parameter information provided by the prior and data. We apply our proposed method to the Bayesian LASSO and spike-and-slab shrinkage priors in the linear regression model and assess the variable selection performance of our prior configurations through a high-dimensional simulation study. Additionally, we apply our method to proteomic data collected from patients admitted to the Albany Medical Center in Albany NY in April of 2020 with COVID-like respiratory issues. Simulation results suggest our proposed configurations may outperform competing models when the true regression effects are small.
Supplementary information: The online version contains supplementary material available at 10.1007/s11222-025-10582-1.
期刊介绍:
Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.
In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.
In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.