Yuan Zhong, Ye Tian, Yan Wang, Jian'an Bai, Qin Long, Lijun Yan, Zhihui Gong, Wei Gao, Qiyun Tang
{"title":"Small extracellular vesicle piR-hsa-30937 derived from pancreatic neuroendocrine neoplasms upregulates CD276 in macrophages to promote immune evasion","authors":"Yuan Zhong, Ye Tian, Yan Wang, Jian'an Bai, Qin Long, Lijun Yan, Zhihui Gong, Wei Gao, Qiyun Tang","doi":"10.1158/2326-6066.cir-23-0825","DOIUrl":null,"url":null,"abstract":"The role of PIWI-interacting RNAs (piRNAs) in small extracellular vesicles (sEV) derived from pancreatic neuroendocrine neoplasms (PNEN) in the tumor microenvironment (TME) remains unexplored. We used multiplex immunohistochemistry (mIHC) to analyze the expression of CD68, CD276 (B7H3) and CD3 on PNEN. CD276+ tumor-associated macrophages (TAMs) were more abundant in tumor tissues than nontumor tissues and negatively correlated with T-cell infiltration. Serum sEV piRNA sequencing was performed to identify piRNAs enriched in PNEN patients. We then investigated the function and mechanism of sEV piR-hsa-30937 in the crosstalk between tumor cells and macrophages in the PNEN TME. PNEN-derived sEV piR-hsa-30937 targeted PTEN to activate the AKT pathway and drive CD276 expression. CD276+ macrophages inhibited T-cell proliferation and IFN- production. piR-hsa-30937 knockdown and anti-CD276 treatment suppressed progression and metastasis in a preclinical model of PNEN by enhancing T-cell immunity. Thus, our data show that PNEN-derived sEV piR-hsa-30937 promotes CD276 expression in macrophages through the PTEN/AKT pathway and that CD276+ TAMs suppress T-cell antitumor immunity. sEV piR-hsa-30937 and CD276 are potential therapeutic targets for immunotherapy of PNEN.","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.cir-23-0825","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The role of PIWI-interacting RNAs (piRNAs) in small extracellular vesicles (sEV) derived from pancreatic neuroendocrine neoplasms (PNEN) in the tumor microenvironment (TME) remains unexplored. We used multiplex immunohistochemistry (mIHC) to analyze the expression of CD68, CD276 (B7H3) and CD3 on PNEN. CD276+ tumor-associated macrophages (TAMs) were more abundant in tumor tissues than nontumor tissues and negatively correlated with T-cell infiltration. Serum sEV piRNA sequencing was performed to identify piRNAs enriched in PNEN patients. We then investigated the function and mechanism of sEV piR-hsa-30937 in the crosstalk between tumor cells and macrophages in the PNEN TME. PNEN-derived sEV piR-hsa-30937 targeted PTEN to activate the AKT pathway and drive CD276 expression. CD276+ macrophages inhibited T-cell proliferation and IFN- production. piR-hsa-30937 knockdown and anti-CD276 treatment suppressed progression and metastasis in a preclinical model of PNEN by enhancing T-cell immunity. Thus, our data show that PNEN-derived sEV piR-hsa-30937 promotes CD276 expression in macrophages through the PTEN/AKT pathway and that CD276+ TAMs suppress T-cell antitumor immunity. sEV piR-hsa-30937 and CD276 are potential therapeutic targets for immunotherapy of PNEN.
期刊介绍:
Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes.
Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.