{"title":"Rethinking the Encoder–decoder Structure in Medical Image Segmentation from Releasing Decoder Structure","authors":"Jiajia Ni, Wei Mu, An Pan, Zhengming Chen","doi":"10.1007/s42235-024-00513-7","DOIUrl":null,"url":null,"abstract":"<div><p>Medical image segmentation has witnessed rapid advancements with the emergence of encoder–decoder based methods. In the encoder–decoder structure, the primary goal of the decoding phase is not only to restore feature map resolution, but also to mitigate the loss of feature information incurred during the encoding phase. However, this approach gives rise to a challenge: multiple up-sampling operations in the decoder segment result in the loss of feature information. To address this challenge, we propose a novel network that removes the decoding structure to reduce feature information loss (CBL-Net). In particular, we introduce a Parallel Pooling Module (PPM) to counteract the feature information loss stemming from conventional and pooling operations during the encoding stage. Furthermore, we incorporate a Multiplexed Dilation Convolution (MDC) module to expand the network's receptive field. Also, although we have removed the decoding stage, we still need to recover the feature map resolution. Therefore, we introduced the Global Feature Recovery (GFR) module. It uses attention mechanism for the image feature map resolution recovery, which can effectively reduce the loss of feature information. We conduct extensive experimental evaluations on three publicly available medical image segmentation datasets: DRIVE, CHASEDB and MoNuSeg datasets. Experimental results show that our proposed network outperforms state-of-the-art methods in medical image segmentation. In addition, it achieves higher efficiency than the current network of coding and decoding structures by eliminating the decoding component.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 3","pages":"1511 - 1521"},"PeriodicalIF":4.9000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00513-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Medical image segmentation has witnessed rapid advancements with the emergence of encoder–decoder based methods. In the encoder–decoder structure, the primary goal of the decoding phase is not only to restore feature map resolution, but also to mitigate the loss of feature information incurred during the encoding phase. However, this approach gives rise to a challenge: multiple up-sampling operations in the decoder segment result in the loss of feature information. To address this challenge, we propose a novel network that removes the decoding structure to reduce feature information loss (CBL-Net). In particular, we introduce a Parallel Pooling Module (PPM) to counteract the feature information loss stemming from conventional and pooling operations during the encoding stage. Furthermore, we incorporate a Multiplexed Dilation Convolution (MDC) module to expand the network's receptive field. Also, although we have removed the decoding stage, we still need to recover the feature map resolution. Therefore, we introduced the Global Feature Recovery (GFR) module. It uses attention mechanism for the image feature map resolution recovery, which can effectively reduce the loss of feature information. We conduct extensive experimental evaluations on three publicly available medical image segmentation datasets: DRIVE, CHASEDB and MoNuSeg datasets. Experimental results show that our proposed network outperforms state-of-the-art methods in medical image segmentation. In addition, it achieves higher efficiency than the current network of coding and decoding structures by eliminating the decoding component.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.