Using the Particle Swarm Optimization (PSO) Algorithm for Baseflow Separation and Determining the Trends for the Yesilirmak River (North Turkey)

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-01-01 DOI:10.3103/s1068373924010060
{"title":"Using the Particle Swarm Optimization (PSO) Algorithm for Baseflow Separation and Determining the Trends for the Yesilirmak River (North Turkey)","authors":"","doi":"10.3103/s1068373924010060","DOIUrl":null,"url":null,"abstract":"<span> <h3>Abstract</h3> <p>Estimation of baseflow is a complex hydrographic task. Baseflow techniques and coefficients vary from basin to basin, stream to stream, and year to year. In this study, meta-heuristic optimization is used to automatically identify baseflow. The Particle Swarm Optimization (PSO), a meta-heuristic optimization approach, is chosen. The constraint and cost functions were determined using the PSO algorithm, Lyne and Hollick techniques, and a computer application. Over the period 1980–2015, the data were collected at the Kale station in the Yesilirmak River basin to validate the study model. The results show that the hydrographs and baseflow dividing line were separated effectively. It has also been revealed that the PSO has a high speed as well as a high level of precision. In the research, in addition to the baseflow separation, the hydrograph, baseflow, and ratio of the baseflow to the streamflow at the station No. 1402 were assessed using the Mann–Kendall test and Innovative Trend Test (ITA), and as a result, their trends have been found. By the use of both of these methods, it has been shown that all parameters have an unfavorable trend. In addition, the research came to some other significant conclusions, such as the fact that the baseflow declines in tandem with the flow values and that the baseflow rates are low in years with high peak values of the hydrograph.</p> </span>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3103/s1068373924010060","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Estimation of baseflow is a complex hydrographic task. Baseflow techniques and coefficients vary from basin to basin, stream to stream, and year to year. In this study, meta-heuristic optimization is used to automatically identify baseflow. The Particle Swarm Optimization (PSO), a meta-heuristic optimization approach, is chosen. The constraint and cost functions were determined using the PSO algorithm, Lyne and Hollick techniques, and a computer application. Over the period 1980–2015, the data were collected at the Kale station in the Yesilirmak River basin to validate the study model. The results show that the hydrographs and baseflow dividing line were separated effectively. It has also been revealed that the PSO has a high speed as well as a high level of precision. In the research, in addition to the baseflow separation, the hydrograph, baseflow, and ratio of the baseflow to the streamflow at the station No. 1402 were assessed using the Mann–Kendall test and Innovative Trend Test (ITA), and as a result, their trends have been found. By the use of both of these methods, it has been shown that all parameters have an unfavorable trend. In addition, the research came to some other significant conclusions, such as the fact that the baseflow declines in tandem with the flow values and that the baseflow rates are low in years with high peak values of the hydrograph.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用粒子群优化(PSO)算法分离基流并确定耶希尔河(土耳其北部)的变化趋势
摘要 基流估算是一项复杂的水文工作。基流技术和系数因流域、溪流和年份而异。本研究采用元启发式优化来自动识别基流。选择了粒子群优化(PSO)这种元启发式优化方法。利用 PSO 算法、Lyne 和 Hollick 技术以及计算机应用程序确定了约束函数和成本函数。收集了 1980-2015 年期间耶希尔河流域卡莱站的数据,以验证研究模型。结果表明,水文图和基流分界线得到了有效分离。此外,还发现 PSO 具有高速度和高精度的特点。在研究中,除了基流分离外,还使用 Mann-Kendall 检验和创新趋势检验(ITA)评估了第 1402 号站的水文图、基流和基流与河水流量的比值,结果发现了它们的趋势。这两种方法的使用表明,所有参数都有不利的趋势。此外,研究还得出了其他一些重要结论,如基流与流量值同步下降,以及在水文图峰值较高的年份基流率较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1