Kyungmin Lee, Hunsang Jung, Heelak Choi, Jong In Won, Hyun Ho Lee
{"title":"Memristor device based on bioengineered elastin-like polypeptide and its bionanohybrid","authors":"Kyungmin Lee, Hunsang Jung, Heelak Choi, Jong In Won, Hyun Ho Lee","doi":"10.1007/s12257-024-00102-9","DOIUrl":null,"url":null,"abstract":"<p>In this study, bioengineered and biosynthesized elastin-like polypeptide (ELP) was adopted for a non-volatile memory resistive switching device or a memristor. The ELP mimicked from elastin of mammal was synthetically produced in polypeptide by <i>Escherichia coli</i> gene recombination. They were composed of a repeating pentapeptide sequence having [Val-Pro-Gly-Val-Gly]<sub>32</sub> sequence for bioelectronic devices with ELP showing multiple electrical resistance states between a high resistance state and a low resistance state through an applied electrical field. In addition, the ELP-coated 5-nm gold nanoparticles (Au NPs) layer was also to be biomaterials used for nanobiohybrid memristive devices. Simple metal–insulator–metal device structure and lateral electrode device with ELP layer on 5-nm Au NPs could show neuromorphic adaptive current–voltage (<i>I</i>–<i>V</i>) behavior and electrical stimulus-induced potentiation and depression in a hydrogel state. In addition, with an introduction of a neurotransmitter cortisol’s specific antibody, a preliminary sensing protocol was also examined with the nanobiohybrid device. Therefore, the introduction of ELP into neuromorphic device is regarded as the cornerstone for the development of biocompatible bioelectronic devices that can be integrated into human bionics for future artificial neuromorphic format.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioprocess Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12257-024-00102-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, bioengineered and biosynthesized elastin-like polypeptide (ELP) was adopted for a non-volatile memory resistive switching device or a memristor. The ELP mimicked from elastin of mammal was synthetically produced in polypeptide by Escherichia coli gene recombination. They were composed of a repeating pentapeptide sequence having [Val-Pro-Gly-Val-Gly]32 sequence for bioelectronic devices with ELP showing multiple electrical resistance states between a high resistance state and a low resistance state through an applied electrical field. In addition, the ELP-coated 5-nm gold nanoparticles (Au NPs) layer was also to be biomaterials used for nanobiohybrid memristive devices. Simple metal–insulator–metal device structure and lateral electrode device with ELP layer on 5-nm Au NPs could show neuromorphic adaptive current–voltage (I–V) behavior and electrical stimulus-induced potentiation and depression in a hydrogel state. In addition, with an introduction of a neurotransmitter cortisol’s specific antibody, a preliminary sensing protocol was also examined with the nanobiohybrid device. Therefore, the introduction of ELP into neuromorphic device is regarded as the cornerstone for the development of biocompatible bioelectronic devices that can be integrated into human bionics for future artificial neuromorphic format.
期刊介绍:
Biotechnology and Bioprocess Engineering is an international bimonthly journal published by the Korean Society for Biotechnology and Bioengineering. BBE is devoted to the advancement in science and technology in the wide area of biotechnology, bioengineering, and (bio)medical engineering. This includes but is not limited to applied molecular and cell biology, engineered biocatalysis and biotransformation, metabolic engineering and systems biology, bioseparation and bioprocess engineering, cell culture technology, environmental and food biotechnology, pharmaceutics and biopharmaceutics, biomaterials engineering, nanobiotechnology, and biosensor and bioelectronics.