{"title":"A review on applications of fine particles integrated with fluidization technologies","authors":"Yue Song, Yue Yuan, Jesse Zhu","doi":"10.1002/cjce.25260","DOIUrl":null,"url":null,"abstract":"<p>Fine particles possess remarkable characteristics including extensive surface-to-weight ratios and diverse morphologies. Consequently, through the use of fluidization techniques, they have become favoured in various industrial processes, especially with continuous production. This review paper offers a comprehensive exploration of the integration of fine particle applications with fluidization technologies, with a specific focus on the Geldart Group C particles sized <25–40 μm. Although there are challenges with processing fine particles such as the strong cohesion in fluidized beds, recent progress, including the nanoparticle modulation method, has demonstrated potential solutions. These advancements render these cohesive particles applicable to industrial applications in different fields, including gas-phase catalytic reactions, gas–solid fluidized bed coal beneficiation, ultrafine powder coating (UPC), pharmaceuticals, environmental sustainability, energy storage, and food processing. However, further research is needed to obtain a better understanding of fine particle fluidization in industrial settings in order to achieve larger-scale implementation. In summary, this review provides a comprehensive overview of fine particle utilization integrated with fluidization technologies, demonstrating the potential in large-scale industrial processes, and enabling significant advancements in practical applications.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":"103 4","pages":"1474-1493"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjce.25260","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25260","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fine particles possess remarkable characteristics including extensive surface-to-weight ratios and diverse morphologies. Consequently, through the use of fluidization techniques, they have become favoured in various industrial processes, especially with continuous production. This review paper offers a comprehensive exploration of the integration of fine particle applications with fluidization technologies, with a specific focus on the Geldart Group C particles sized <25–40 μm. Although there are challenges with processing fine particles such as the strong cohesion in fluidized beds, recent progress, including the nanoparticle modulation method, has demonstrated potential solutions. These advancements render these cohesive particles applicable to industrial applications in different fields, including gas-phase catalytic reactions, gas–solid fluidized bed coal beneficiation, ultrafine powder coating (UPC), pharmaceuticals, environmental sustainability, energy storage, and food processing. However, further research is needed to obtain a better understanding of fine particle fluidization in industrial settings in order to achieve larger-scale implementation. In summary, this review provides a comprehensive overview of fine particle utilization integrated with fluidization technologies, demonstrating the potential in large-scale industrial processes, and enabling significant advancements in practical applications.
期刊介绍:
The Canadian Journal of Chemical Engineering (CJChE) publishes original research articles, new theoretical interpretation or experimental findings and critical reviews in the science or industrial practice of chemical and biochemical processes. Preference is given to papers having a clearly indicated scope and applicability in any of the following areas: Fluid mechanics, heat and mass transfer, multiphase flows, separations processes, thermodynamics, process systems engineering, reactors and reaction kinetics, catalysis, interfacial phenomena, electrochemical phenomena, bioengineering, minerals processing and natural products and environmental and energy engineering. Papers that merely describe or present a conventional or routine analysis of existing processes will not be considered.