Ultrafast oscillation in a field emission-driven miniaturized gaseous diode

Jiandong Chen, Chubin Lin, Huihui Wang, Lay Kee Ang, Yangyang Fu
{"title":"Ultrafast oscillation in a field emission-driven miniaturized gaseous diode","authors":"Jiandong Chen, Chubin Lin, Huihui Wang, Lay Kee Ang, Yangyang Fu","doi":"10.1088/1361-6595/ad36df","DOIUrl":null,"url":null,"abstract":"We report an ultrafast oscillation (up to <inline-formula>\n<tex-math><?CDATA ${\\sim} 10^4$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mo>∼</mml:mo></mml:mrow><mml:msup><mml:mn>10</mml:mn><mml:mn>4</mml:mn></mml:msup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"psstad36dfieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> GHz) in the early stage of field emission-driven microdischarges. Spatiotemporal behaviors of electron density, space charge density, and electric field, exhibiting high-frequency oscillations, are demonstrated based on first-principle particle-in-cell/Monte Carlo collision simulations. Intermittent electron emission fluxes are identified from the electron phase space distributions whereas the ions are rather non-oscillatory in the transient timescale. The mechanisms of oscillation with growing amplitude are found to be related to the rapid modification of the field emission current affected by the space charge electric field, which is also accompanied by the fast response of the electron transport and ionization in a dynamic double-layer sheath. Further, a transport equation for emission current is solved to estimate the oscillation frequency, which agrees well with the simulation results. This study provides a more precise understanding of the formation of the field emission-driven microdischarge, which informs the design and optimization of miniaturized gaseous electronic devices.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Sources Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6595/ad36df","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We report an ultrafast oscillation (up to 104 GHz) in the early stage of field emission-driven microdischarges. Spatiotemporal behaviors of electron density, space charge density, and electric field, exhibiting high-frequency oscillations, are demonstrated based on first-principle particle-in-cell/Monte Carlo collision simulations. Intermittent electron emission fluxes are identified from the electron phase space distributions whereas the ions are rather non-oscillatory in the transient timescale. The mechanisms of oscillation with growing amplitude are found to be related to the rapid modification of the field emission current affected by the space charge electric field, which is also accompanied by the fast response of the electron transport and ionization in a dynamic double-layer sheath. Further, a transport equation for emission current is solved to estimate the oscillation frequency, which agrees well with the simulation results. This study provides a more precise understanding of the formation of the field emission-driven microdischarge, which informs the design and optimization of miniaturized gaseous electronic devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
场发射驱动微型气态二极管中的超快振荡
我们报告了场发射驱动微放电早期阶段的超快振荡(高达 ∼104 GHz)。基于第一原理的粒子入胞/蒙特卡洛碰撞模拟,证明了电子密度、空间电荷密度和电场的时空行为呈现出高频振荡。根据电子相空间分布确定了间歇性电子发射通量,而离子在瞬态时间尺度上是非振荡的。振荡振幅越来越大的机制与空间电荷电场影响场发射电流的快速变化有关,同时也与动态双层鞘中电子传输和电离的快速反应有关。此外,通过求解发射电流的输运方程来估算振荡频率,结果与模拟结果非常吻合。这项研究提供了对场发射驱动微放电形成的更精确理解,为小型化气态电子器件的设计和优化提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ThunderBoltz: an open-source direct simulation Monte Carlo Boltzmann solver for plasma transport, chemical kinetics, and 0D modeling Kinetic investigation of discharge performance for Xe, Kr, and Ar in a miniature ion thruster using a fast converging PIC-MCC-DSMC model Ground experimental study of the electron density of plasma sheath reduced by pulsed discharge Breakdown modes of capacitively coupled plasma: I. Transitions from glow discharge to multipactor Breakdown modes of capacitively coupled plasma: II. Non-self-sustained discharges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1