The mechanical properties of different cross-veins in the hind wing of locust Locusta migratoria under uniaxial tensile and stress relaxation tests

IF 3.6 3区 生物学 Q1 BIOLOGY Interface Focus Pub Date : 2024-04-12 DOI:10.1098/rsfs.2023.0068
Yizun Zhou, Linxin Bai, Chao Wan
{"title":"The mechanical properties of different cross-veins in the hind wing of locust Locusta migratoria under uniaxial tensile and stress relaxation tests","authors":"Yizun Zhou, Linxin Bai, Chao Wan","doi":"10.1098/rsfs.2023.0068","DOIUrl":null,"url":null,"abstract":"<p>Locust <i>Locusta migratoria</i> exhibits remarkable aerial performances, relying predominantly on its hind wings that generate most of lift and thrust for flight. The mechanical properties of the cross-veins determine the deformation of the hind wing, which greatly affect the aerodynamic performance of flapping flight. However, whether the mechanical behaviours of the locust cross-veins change with loading rate is still unknown. In this study, cross-veins in four physiological regions (anterior–medial, anterior–lateral, posterior–medial and posterior–lateral) of the hind wing from adult locusts were investigated using uniaxial tensile test, stress relaxation test and fluorescence microscopy. It was found that the cross-veins were a type of viscoelastic material (including rate-independent elastic modulus and obvious stress relaxation). The cross-veins in the two anterior regions of the hind wing had significantly higher elastic moduli and higher ultimate tensile stress than those of its two posterior regions. This difference might be attributed to different resilin distribution patterns in the cross-veins. These findings furnish new insights into the mechanical characteristics of the locust cross-veins, which might deepen our understanding of the aerodynamic mechanisms of locust flapping flight.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2023.0068","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Locust Locusta migratoria exhibits remarkable aerial performances, relying predominantly on its hind wings that generate most of lift and thrust for flight. The mechanical properties of the cross-veins determine the deformation of the hind wing, which greatly affect the aerodynamic performance of flapping flight. However, whether the mechanical behaviours of the locust cross-veins change with loading rate is still unknown. In this study, cross-veins in four physiological regions (anterior–medial, anterior–lateral, posterior–medial and posterior–lateral) of the hind wing from adult locusts were investigated using uniaxial tensile test, stress relaxation test and fluorescence microscopy. It was found that the cross-veins were a type of viscoelastic material (including rate-independent elastic modulus and obvious stress relaxation). The cross-veins in the two anterior regions of the hind wing had significantly higher elastic moduli and higher ultimate tensile stress than those of its two posterior regions. This difference might be attributed to different resilin distribution patterns in the cross-veins. These findings furnish new insights into the mechanical characteristics of the locust cross-veins, which might deepen our understanding of the aerodynamic mechanisms of locust flapping flight.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单轴拉伸和应力松弛试验下蝗虫后翅不同横脉的力学特性
蝗虫Locusta migratoria具有非凡的飞行性能,主要依靠后翅产生大部分升力和推力进行飞行。横脉的机械特性决定了后翅的变形,这在很大程度上影响了拍打飞行的气动性能。然而,蝗虫横脉的力学行为是否会随着加载速率的变化而变化,目前仍是未知数。本研究利用单轴拉伸试验、应力松弛试验和荧光显微镜研究了成年蝗虫后翅四个生理区域(前中侧、前外侧、后中侧和后外侧)的横纹。结果发现,横纹是一种粘弹性材料(包括与速率无关的弹性模量和明显的应力松弛)。后翅两前部横纹的弹性模量和极限拉伸应力明显高于两后部横纹。这种差异可能是由于横脉中树脂蛋白的分布模式不同造成的。这些发现为我们了解蝗虫横脉的力学特性提供了新的视角,可能会加深我们对蝗虫拍打飞行的空气动力学机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Interface Focus
Interface Focus BIOLOGY-
CiteScore
9.20
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.
期刊最新文献
Capacity building in porous materials research for sustainable energy applications. Chem4Energy: a consortium of the Royal Society Africa Capacity-Building Initiative. Creating sustainable capacity for river science in the Congo basin through the CRuHM project. Doctoral training to support sustainable soil geochemistry research in Africa. Materials modelling in the University of Limpopo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1