Daniela E. Winkler, Hitomi Seike, Shinji Nagata, Mugino O. Kubo
{"title":"Mandible microwear texture analysis of crickets raised on diets of different abrasiveness reveals universality of diet-induced wear","authors":"Daniela E. Winkler, Hitomi Seike, Shinji Nagata, Mugino O. Kubo","doi":"10.1098/rsfs.2023.0065","DOIUrl":null,"url":null,"abstract":"<p>Animals have evolved diverse comminuting tools. While vertebrates possess mineralized teeth, insect mandibles often bear metal-inclusion-hardened serrated cusps. Microscopic dental enamel wear (microwear) is known to be caused by contact with ingesta. To test if insect mandible microwear is also diet-dependent, we kept newly moulted adult two-spotted crickets (<i>Gryllus bimaculatus</i>) for four weeks on alfalfa-based rodent pellets with and without added mineral abrasives (loess, quartz, volcanic ash). Six crickets per diet were examined after 1, 3, 7, 14, 21 and 28 days. All diets induced progressive mandible wear, affecting specific locations along the distal tooth cusps differently. The depth of furrows increased on most abrasive-containing diets until day 21, while wear mark complexity increased from day 1 to 3 and 14 to 21. After 28 days, these parameter values for large volcanic ash and large quartz diets significantly exceeded those for the control diet. These results are comparable to observations from guinea pig feeding experiments with the same diets. Cricket mandible wear was affected by all abrasives. Notably, large volcanic ash and large quartz induced the deepest, most complex lesions, akin to observations in guinea pigs. This suggests a universal wear process, supporting that microwear analyses are suitable for inferring invertebrate diets.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"20 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2023.0065","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Animals have evolved diverse comminuting tools. While vertebrates possess mineralized teeth, insect mandibles often bear metal-inclusion-hardened serrated cusps. Microscopic dental enamel wear (microwear) is known to be caused by contact with ingesta. To test if insect mandible microwear is also diet-dependent, we kept newly moulted adult two-spotted crickets (Gryllus bimaculatus) for four weeks on alfalfa-based rodent pellets with and without added mineral abrasives (loess, quartz, volcanic ash). Six crickets per diet were examined after 1, 3, 7, 14, 21 and 28 days. All diets induced progressive mandible wear, affecting specific locations along the distal tooth cusps differently. The depth of furrows increased on most abrasive-containing diets until day 21, while wear mark complexity increased from day 1 to 3 and 14 to 21. After 28 days, these parameter values for large volcanic ash and large quartz diets significantly exceeded those for the control diet. These results are comparable to observations from guinea pig feeding experiments with the same diets. Cricket mandible wear was affected by all abrasives. Notably, large volcanic ash and large quartz induced the deepest, most complex lesions, akin to observations in guinea pigs. This suggests a universal wear process, supporting that microwear analyses are suitable for inferring invertebrate diets.
期刊介绍:
Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.