{"title":"Existence, Stability and Slow Dynamics of Spikes in a 1D Minimal Keller–Segel Model with Logistic Growth","authors":"Fanze Kong, Michael J. Ward, Juncheng Wei","doi":"10.1007/s00332-024-10025-7","DOIUrl":null,"url":null,"abstract":"<p>We analyze the existence, linear stability, and slow dynamics of localized 1D spike patterns for a Keller–Segel model of chemotaxis that includes the effect of logistic growth of the cellular population. Our analysis of localized patterns for this two-component reaction–diffusion (RD) model is based, not on the usual limit of a large chemotactic drift coefficient, but instead on the singular limit of an asymptotically small diffusivity <span>\\(d_2=\\epsilon ^2\\ll 1\\)</span> of the chemoattractant concentration field. In the limit <span>\\(d_2\\ll 1\\)</span>, steady-state and quasi-equilibrium 1D multi-spike patterns are constructed asymptotically. To determine the linear stability of steady-state <i>N</i>-spike patterns, we analyze the spectral properties associated with both the “large” <span>\\({{\\mathcal {O}}}(1)\\)</span> and the “small” <i>o</i>(1) eigenvalues associated with the linearization of the Keller–Segel model. By analyzing a nonlocal eigenvalue problem characterizing the large eigenvalues, it is shown that <i>N</i>-spike equilibria can be destabilized by a zero-eigenvalue crossing leading to a competition instability if the cellular diffusion rate <span>\\(d_1\\)</span> exceeds a threshold, or from a Hopf bifurcation if a relaxation time constant <span>\\(\\tau \\)</span> is too large. In addition, a matrix eigenvalue problem that governs the stability properties of an <i>N</i>-spike steady-state with respect to the small eigenvalues is derived. From an analysis of this matrix problem, an explicit range of <span>\\(d_1\\)</span> where the <i>N</i>-spike steady-state is stable to the small eigenvalues is identified. Finally, for quasi-equilibrium spike patterns that are stable on an <span>\\({{\\mathcal {O}}}(1)\\)</span> time-scale, we derive a differential algebraic system (DAE) governing the slow dynamics of a collection of localized spikes. Unexpectedly, our analysis of the KS model with logistic growth in the singular limit <span>\\(d_2\\ll 1\\)</span> is rather closely related to the analysis of spike patterns for the Gierer–Meinhardt RD system.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10025-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We analyze the existence, linear stability, and slow dynamics of localized 1D spike patterns for a Keller–Segel model of chemotaxis that includes the effect of logistic growth of the cellular population. Our analysis of localized patterns for this two-component reaction–diffusion (RD) model is based, not on the usual limit of a large chemotactic drift coefficient, but instead on the singular limit of an asymptotically small diffusivity \(d_2=\epsilon ^2\ll 1\) of the chemoattractant concentration field. In the limit \(d_2\ll 1\), steady-state and quasi-equilibrium 1D multi-spike patterns are constructed asymptotically. To determine the linear stability of steady-state N-spike patterns, we analyze the spectral properties associated with both the “large” \({{\mathcal {O}}}(1)\) and the “small” o(1) eigenvalues associated with the linearization of the Keller–Segel model. By analyzing a nonlocal eigenvalue problem characterizing the large eigenvalues, it is shown that N-spike equilibria can be destabilized by a zero-eigenvalue crossing leading to a competition instability if the cellular diffusion rate \(d_1\) exceeds a threshold, or from a Hopf bifurcation if a relaxation time constant \(\tau \) is too large. In addition, a matrix eigenvalue problem that governs the stability properties of an N-spike steady-state with respect to the small eigenvalues is derived. From an analysis of this matrix problem, an explicit range of \(d_1\) where the N-spike steady-state is stable to the small eigenvalues is identified. Finally, for quasi-equilibrium spike patterns that are stable on an \({{\mathcal {O}}}(1)\) time-scale, we derive a differential algebraic system (DAE) governing the slow dynamics of a collection of localized spikes. Unexpectedly, our analysis of the KS model with logistic growth in the singular limit \(d_2\ll 1\) is rather closely related to the analysis of spike patterns for the Gierer–Meinhardt RD system.