Bioluminescence-Based Determination of Cytosolic Accumulation of Antibiotics in Escherichia coli

IF 4 2区 医学 Q2 CHEMISTRY, MEDICINAL ACS Infectious Diseases Pub Date : 2024-04-09 DOI:10.1021/acsinfecdis.3c00684
Rachita Dash, Kadie A. Holsinger, Mahendra D. Chordia, Mohammad Sharifian Gh. and Marcos M. Pires*, 
{"title":"Bioluminescence-Based Determination of Cytosolic Accumulation of Antibiotics in Escherichia coli","authors":"Rachita Dash,&nbsp;Kadie A. Holsinger,&nbsp;Mahendra D. Chordia,&nbsp;Mohammad Sharifian Gh. and Marcos M. Pires*,&nbsp;","doi":"10.1021/acsinfecdis.3c00684","DOIUrl":null,"url":null,"abstract":"<p >Antibiotic resistance is an alarming public health concern that affects millions of individuals across the globe each year. A major challenge in the development of effective antibiotics lies in their limited ability to permeate cells, noting that numerous susceptible antibiotic targets reside within the bacterial cytosol. Consequently, improving the cellular permeability is often a key consideration during antibiotic development, underscoring the need for reliable methods to assess the permeability of molecules across cellular membranes. Currently, methods used to measure permeability often fail to discriminate between the arrival within the cytoplasm and the overall association of molecules with the cell. Additionally, these techniques typically possess throughput limitations. In this work, we describe a luciferase-based assay designed for assessing the permeability of molecules in the cytosolic compartment of Gram-negative bacteria. Our findings demonstrate a robust system that can elucidate the kinetics of intracellular antibiotic accumulation in live bacterial cells in real time.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsinfecdis.3c00684","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsinfecdis.3c00684","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Antibiotic resistance is an alarming public health concern that affects millions of individuals across the globe each year. A major challenge in the development of effective antibiotics lies in their limited ability to permeate cells, noting that numerous susceptible antibiotic targets reside within the bacterial cytosol. Consequently, improving the cellular permeability is often a key consideration during antibiotic development, underscoring the need for reliable methods to assess the permeability of molecules across cellular membranes. Currently, methods used to measure permeability often fail to discriminate between the arrival within the cytoplasm and the overall association of molecules with the cell. Additionally, these techniques typically possess throughput limitations. In this work, we describe a luciferase-based assay designed for assessing the permeability of molecules in the cytosolic compartment of Gram-negative bacteria. Our findings demonstrate a robust system that can elucidate the kinetics of intracellular antibiotic accumulation in live bacterial cells in real time.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于生物发光法测定大肠杆菌细胞膜中抗生素的蓄积情况
抗生素耐药性是一个令人担忧的公共卫生问题,每年影响着全球数百万人。开发有效抗生素的一个主要挑战在于抗生素渗透细胞的能力有限,因为许多易感抗生素靶点都位于细菌细胞膜内。因此,提高细胞渗透性往往是抗生素开发过程中的一个关键考虑因素,这就需要有可靠的方法来评估分子在细胞膜上的渗透性。目前,用于测量渗透性的方法往往无法区分到达细胞质内的分子和分子与细胞的整体关联。此外,这些技术通常还存在通量限制。在这项研究中,我们介绍了一种基于荧光素酶的检测方法,旨在评估革兰氏阴性细菌细胞质中分子的渗透性。我们的研究结果表明,这种稳健的系统可以实时阐明活细菌细胞内抗生素积累的动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Infectious Diseases
ACS Infectious Diseases CHEMISTRY, MEDICINALINFECTIOUS DISEASES&nb-INFECTIOUS DISEASES
CiteScore
9.70
自引率
3.80%
发文量
213
期刊介绍: ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to: * Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials. * Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets. * Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance. * Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents. * Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota. * Small molecule vaccine adjuvants for infectious disease. * Viral and bacterial biochemistry and molecular biology.
期刊最新文献
Mycobacterium tuberculosis Suppresses Inflammatory Responses in Host through Its Cholesterol Metabolites. 2-Aryl-Benzoimidazoles as Type II NADH Dehydrogenase Inhibitors of Mycobacterium tuberculosis. Honoring a Legacy: "Vigyan Ratna" Prof. G. Padmanaban. High Affinity Inhibitors of the Macrophage Infectivity Potentiator Protein from Trypanosoma cruzi, Burkholderia pseudomallei, and Legionella pneumophila─A Comparison. Tolfenpyrad Derivatives Exhibit Potent Francisella-Specific Antibacterial Activity without Toxicity to Mammalian Cells In Vitro.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1