Indomethacin restrains cytoplasmic nucleic acid-stimulated immune responses by inhibiting the nuclear translocation of IRF3

IF 5.3 2区 生物学 Q2 CELL BIOLOGY Journal of Molecular Cell Biology Pub Date : 2024-04-04 DOI:10.1093/jmcb/mjae015
Miao Wang, Xiao-Wei Li, Sen-Chao Yuan, Jie Pan, Zeng-Lin Guo, Li-Ming Sun, Shao-Zhen Jiang, Ming Zhao, Wen Xue, Hong Cai, Lin Gu, Dan Luo, Ling Chen, Xue-Qing Zhou, Qiu-Ying Han, Jin Li, Tao Zhou, Tian Xia, Tao Li
{"title":"Indomethacin restrains cytoplasmic nucleic acid-stimulated immune responses by inhibiting the nuclear translocation of IRF3","authors":"Miao Wang, Xiao-Wei Li, Sen-Chao Yuan, Jie Pan, Zeng-Lin Guo, Li-Ming Sun, Shao-Zhen Jiang, Ming Zhao, Wen Xue, Hong Cai, Lin Gu, Dan Luo, Ling Chen, Xue-Qing Zhou, Qiu-Ying Han, Jin Li, Tao Zhou, Tian Xia, Tao Li","doi":"10.1093/jmcb/mjae015","DOIUrl":null,"url":null,"abstract":"The recognition of cytosolic nucleic acid triggers the DNA/RNA sensor–IRF3 axis-mediated production of type I interferons (IFNs), which are essential for antiviral immune responses. However, the inappropriate activation of these signaling pathways is implicated in autoimmune conditions. Here, we report that indomethacin, a widely used nonsteroidal anti-inflammatory drug, inhibits nucleic acid-triggered IFN production. We found that both DNA- and RNA-stimulated IFN expression can be effectively blocked by indomethacin. Interestingly, indomethacin also prohibits the nuclear translocation of IRF3 following cytosolic nucleic acid recognition. Importantly, in cell lines and a mouse model of Aicardi–Goutières syndrome, indomethacin administration blunts self-DNA-induced autoimmune responses. Thus, our study reveals a previously unknown function of indomethacin and provides a potential treatment for cytosolic nucleic acid-stimulated autoimmunity.","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":"30 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmcb/mjae015","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The recognition of cytosolic nucleic acid triggers the DNA/RNA sensor–IRF3 axis-mediated production of type I interferons (IFNs), which are essential for antiviral immune responses. However, the inappropriate activation of these signaling pathways is implicated in autoimmune conditions. Here, we report that indomethacin, a widely used nonsteroidal anti-inflammatory drug, inhibits nucleic acid-triggered IFN production. We found that both DNA- and RNA-stimulated IFN expression can be effectively blocked by indomethacin. Interestingly, indomethacin also prohibits the nuclear translocation of IRF3 following cytosolic nucleic acid recognition. Importantly, in cell lines and a mouse model of Aicardi–Goutières syndrome, indomethacin administration blunts self-DNA-induced autoimmune responses. Thus, our study reveals a previously unknown function of indomethacin and provides a potential treatment for cytosolic nucleic acid-stimulated autoimmunity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
吲哚美辛通过抑制 IRF3 的核转位抑制细胞质核酸刺激的免疫反应
细胞膜核酸的识别会触发 DNA/RNA 传感器-IRF3 轴介导的 I 型干扰素(IFNs)的产生,IFNs 是抗病毒免疫反应所必需的。然而,这些信号通路的不适当激活与自身免疫疾病有关。在这里,我们报告了一种广泛使用的非甾体抗炎药物--吲哚美辛能抑制核酸触发的 IFN 生成。我们发现,吲哚美辛能有效阻断 DNA 和 RNA 刺激的 IFN 表达。有趣的是,吲哚美辛还能抑制IRF3在细胞核酸识别后的核转位。重要的是,在细胞系和艾卡迪-古蒂耶尔综合征小鼠模型中,吲哚美辛能减弱自身 DNA 诱导的自身免疫反应。因此,我们的研究揭示了吲哚美辛以前未知的功能,并为细胞核酸刺激的自身免疫提供了一种潜在的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
1.80%
发文量
1383
期刊介绍: The Journal of Molecular Cell Biology ( JMCB ) is a full open access, peer-reviewed online journal interested in inter-disciplinary studies at the cross-sections between molecular and cell biology as well as other disciplines of life sciences. The broad scope of JMCB reflects the merging of these life science disciplines such as stem cell research, signaling, genetics, epigenetics, genomics, development, immunology, cancer biology, molecular pathogenesis, neuroscience, and systems biology. The journal will publish primary research papers with findings of unusual significance and broad scientific interest. Review articles, letters and commentary on timely issues are also welcome. JMCB features an outstanding Editorial Board, which will serve as scientific advisors to the journal and provide strategic guidance for the development of the journal. By selecting only the best papers for publication, JMCB will provide a first rate publishing forum for scientists all over the world.
期刊最新文献
Blockade of TNF-α/TNFR2 signalling suppresses colorectal cancer and enhances the efficacy of anti-PD1 immunotherapy by decreasing CCR8+T regulatory cells. Unleashing the power of antigen-presenting neutrophils. Molecular insights into AGS3's role in spindle orientation: a biochemical perspective. Increased serum β-hydroxybutyrate/acetoacetate ratio and aggravated histological liver inflammation in females with metabolic dysfunction-associated steatotic liver disease and polycystic ovary syndrome. Structure-specific nucleases in genome dynamics and strategies for targeting cancers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1