首页 > 最新文献

Journal of Molecular Cell Biology最新文献

英文 中文
Increased serum β-hydroxybutyrate/acetoacetate ratio and aggravated histological liver inflammation in females with metabolic dysfunction-associated steatotic liver disease and polycystic ovary syndrome. 代谢功能障碍相关性脂肪性肝病和多囊卵巢综合征女性血清β-羟丁酸/乙酰乙酸比值升高,肝脏组织学炎症加重。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-30 DOI: 10.1093/jmcb/mjae048
Xiaopeng Zhu, Guligeina Aikebaier, Xilei Ban, Qingxia Huang, Hongmei Yan, Xinxia Chang, Xinyu Yang, Xiaoyang Sun, Huiru Tang, Hua Bian, Xin Gao, Mingfeng Xia
{"title":"Increased serum β-hydroxybutyrate/acetoacetate ratio and aggravated histological liver inflammation in females with metabolic dysfunction-associated steatotic liver disease and polycystic ovary syndrome.","authors":"Xiaopeng Zhu, Guligeina Aikebaier, Xilei Ban, Qingxia Huang, Hongmei Yan, Xinxia Chang, Xinyu Yang, Xiaoyang Sun, Huiru Tang, Hua Bian, Xin Gao, Mingfeng Xia","doi":"10.1093/jmcb/mjae048","DOIUrl":"https://doi.org/10.1093/jmcb/mjae048","url":null,"abstract":"","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CCT6A alleviates pulmonary fibrosis by inhibiting HIF-1α-mediated lactate production. CCT6A通过抑制HIF-1α介导的乳酸生成减轻肺纤维化。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-21 DOI: 10.1093/jmcb/mjae021
Peishuo Yan, Kun Yang, Mengwei Xu, Miaomiao Zhu, Yudi Duan, Wenwen Li, Lulu Liu, Chenxi Liang, Zhongzheng Li, Xin Pan, Lan Wang, Guoying Yu

Idiopathic pulmonary fibrosis (IPF) is a lethal progressive fibrotic lung disease. The development of IPF involves different molecular and cellular processes, and recent studies indicate that lactate plays a significant role in promoting the progression of the disease. Nevertheless, the mechanism by which lactate metabolism is regulated and the downstream effects remain unclear. The molecular chaperone CCT6A performs multiple functions in a variety of biological processes. Our research has identified a potential association between CCT6A and serum lactate levels in IPF patients. Herein, we found that CCT6A was highly expressed in type 2 alveolar epithelial cells (AEC2s) of fibrotic lung tissues and correlated with disease severity. Lactate increases the accumulation of lipid droplets in epithelial cells. CCT6A inhibits lipid synthesis by blocking the production of lactate in AEC2s and alleviates bleomycin-induced pulmonary fibrosis in mice. In addition, our results revealed that CCT6A blocks HIF-1α-mediated lactate production by driving the VHL-dependent ubiquitination and degradation of HIF-1α and further inhibits lipid accumulation in fibrotic lungs. In conclusion, we propose that there is a pivotal regulatory role of CCT6A in lactate metabolism in pulmonary fibrosis, and strategies aimed at targeting these key molecules could represent potential therapeutic approaches for pulmonary fibrosis.

特发性肺纤维化(IPF)是一种致命的进行性肺纤维化疾病。IPF 的发展涉及不同的分子和细胞过程,最近的研究表明,乳酸在促进疾病进展方面发挥着重要作用。然而,乳酸代谢的调控机制及其下游效应仍不清楚。分子伴侣 CCT6A 在多种生物过程中发挥着多种功能。我们的研究发现了 CCT6A 与 IPF 患者血清乳酸水平之间的潜在关联。在此,我们发现 CCT6A 在纤维化肺组织的 2 型肺泡上皮细胞(AEC2s)中高表达,并与疾病严重程度相关。乳酸盐会增加上皮细胞中脂滴的积累。CCT6A 通过阻断 AEC2s 中乳酸的产生来抑制脂质的合成,并缓解博莱霉素诱导的小鼠肺纤维化。此外,我们的研究结果表明,CCT6A通过驱动依赖于VHL的HIF-1α泛素化和降解,阻断了HIF-1α介导的乳酸生成,并进一步抑制了纤维化肺中的脂质积累。总之,我们认为 CCT6A 在肺纤维化的乳酸代谢中起着关键的调控作用,针对这些关键分子的策略可能是肺纤维化的潜在治疗方法。
{"title":"CCT6A alleviates pulmonary fibrosis by inhibiting HIF-1α-mediated lactate production.","authors":"Peishuo Yan, Kun Yang, Mengwei Xu, Miaomiao Zhu, Yudi Duan, Wenwen Li, Lulu Liu, Chenxi Liang, Zhongzheng Li, Xin Pan, Lan Wang, Guoying Yu","doi":"10.1093/jmcb/mjae021","DOIUrl":"10.1093/jmcb/mjae021","url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is a lethal progressive fibrotic lung disease. The development of IPF involves different molecular and cellular processes, and recent studies indicate that lactate plays a significant role in promoting the progression of the disease. Nevertheless, the mechanism by which lactate metabolism is regulated and the downstream effects remain unclear. The molecular chaperone CCT6A performs multiple functions in a variety of biological processes. Our research has identified a potential association between CCT6A and serum lactate levels in IPF patients. Herein, we found that CCT6A was highly expressed in type 2 alveolar epithelial cells (AEC2s) of fibrotic lung tissues and correlated with disease severity. Lactate increases the accumulation of lipid droplets in epithelial cells. CCT6A inhibits lipid synthesis by blocking the production of lactate in AEC2s and alleviates bleomycin-induced pulmonary fibrosis in mice. In addition, our results revealed that CCT6A blocks HIF-1α-mediated lactate production by driving the VHL-dependent ubiquitination and degradation of HIF-1α and further inhibits lipid accumulation in fibrotic lungs. In conclusion, we propose that there is a pivotal regulatory role of CCT6A in lactate metabolism in pulmonary fibrosis, and strategies aimed at targeting these key molecules could represent potential therapeutic approaches for pulmonary fibrosis.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574388/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140957738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure-specific nucleases in genome dynamics and strategies for targeting cancers. 基因组动态中的结构特异性核酸酶和针对癌症的策略。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-21 DOI: 10.1093/jmcb/mjae019
Haitao Sun, Megan Luo, Mian Zhou, Li Zheng, Hongzhi Li, R Steven Esworthy, Binghui Shen

Nucleases are a super family of enzymes that hydrolyze phosphodiester bonds present in genomes. They widely vary in substrates, causing differentiation in cleavage patterns and having a diversified role in maintaining genetic material. Through cellular evolution of prokaryotic to eukaryotic, nucleases become structure-specific in recognizing its own or foreign genomic DNA/RNA configurations as its substrates, including flaps, bubbles, and Holliday junctions. These special structural configurations are commonly found as intermediates in processes like DNA replication, repair, and recombination. The structure-specific nature and diversified functions make them essential to maintaining genome integrity and evolution in normal and cancer cells. In this article, we review their roles in various pathways, including Okazaki fragment maturation during DNA replication, end resection in homology-directed recombination repair of DNA double-strand breaks, DNA excision repair and apoptosis DNA fragmentation in response to exogenous DNA damage, and HIV life cycle. As the nucleases serve as key points for the DNA dynamics, cellular apoptosis, and cancer cell survival pathways, we discuss the efforts in the field in developing the therapeutic regimens, taking advantage of recently available knowledge of their diversified structures and functions.

核酸酶是水解基因组中磷酸二酯键的超级酶家族。它们的底物千差万别,导致裂解模式的差异,并在维持遗传物质方面发挥着多样化的作用。从原核细胞到真核细胞的细胞进化过程中,核酸酶具有结构特异性,能识别自身或外来基因组 DNA/RNA 构型作为底物,包括瓣膜、气泡和霍利迪连接。这些特殊的结构构型通常是 DNA 复制、修复和重组等过程的中间产物。结构的特异性和功能的多样性使它们对维持正常细胞和癌细胞基因组的完整性和进化至关重要。在本文中,我们将回顾它们在各种途径中的作用,包括 DNA 复制过程中的冈崎片段成熟、DNA 双链断裂同源定向重组修复中的末端切除、DNA 切除修复和外源性 DNA 损伤时的 DNA 片段凋亡以及 HIV 生命周期。由于核酸酶是 DNA 动态、细胞凋亡和癌细胞存活途径的关键点,我们将讨论该领域在开发治疗方案方面所做的努力,并利用最近获得的有关核酸酶多样化结构和功能的知识。
{"title":"Structure-specific nucleases in genome dynamics and strategies for targeting cancers.","authors":"Haitao Sun, Megan Luo, Mian Zhou, Li Zheng, Hongzhi Li, R Steven Esworthy, Binghui Shen","doi":"10.1093/jmcb/mjae019","DOIUrl":"10.1093/jmcb/mjae019","url":null,"abstract":"<p><p>Nucleases are a super family of enzymes that hydrolyze phosphodiester bonds present in genomes. They widely vary in substrates, causing differentiation in cleavage patterns and having a diversified role in maintaining genetic material. Through cellular evolution of prokaryotic to eukaryotic, nucleases become structure-specific in recognizing its own or foreign genomic DNA/RNA configurations as its substrates, including flaps, bubbles, and Holliday junctions. These special structural configurations are commonly found as intermediates in processes like DNA replication, repair, and recombination. The structure-specific nature and diversified functions make them essential to maintaining genome integrity and evolution in normal and cancer cells. In this article, we review their roles in various pathways, including Okazaki fragment maturation during DNA replication, end resection in homology-directed recombination repair of DNA double-strand breaks, DNA excision repair and apoptosis DNA fragmentation in response to exogenous DNA damage, and HIV life cycle. As the nucleases serve as key points for the DNA dynamics, cellular apoptosis, and cancer cell survival pathways, we discuss the efforts in the field in developing the therapeutic regimens, taking advantage of recently available knowledge of their diversified structures and functions.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574390/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140876596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CSPP1 preserves quiescent microtubule functions by dual-end capping. CSPP1 通过双端封顶来保护静态微管功能
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-21 DOI: 10.1093/jmcb/mjae022
Marina Mapelli
{"title":"CSPP1 preserves quiescent microtubule functions by dual-end capping.","authors":"Marina Mapelli","doi":"10.1093/jmcb/mjae022","DOIUrl":"10.1093/jmcb/mjae022","url":null,"abstract":"","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492122/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141076015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sympathetic nerve signals: orchestrators of mammary development and stem cell vitality. 交感神经信号:乳腺发育和干细胞活力的协调者。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-21 DOI: 10.1093/jmcb/mjae020
Zi Ye, Yu Xu, Mengna Zhang, Cheguo Cai

The mammary gland is a dynamic organ that undergoes significant changes at multiple stages of postnatal development. Although the roles of systemic hormones and microenvironmental cues in mammary homeostasis have been extensively studied, the influence of neural signals, particularly those from the sympathetic nervous system, remains poorly understood. Here, using a mouse mammary gland model, we delved into the regulatory role of sympathetic nervous signaling in the context of mammary stem cells and mammary development. Our findings revealed that depletion of sympathetic nerve signals results in defective mammary development during puberty, adulthood, and pregnancy, accompanied by a reduction in mammary stem cell numbers. Through in vitro three-dimensional culture and in vivo transplantation analyses, we demonstrated that the absence of sympathetic nerve signals hinders mammary stem cell self-renewal and regeneration, while activation of sympathetic nervous signaling promotes these capacities. Mechanistically, sympathetic nerve signals orchestrate mammary stem cell activity and mammary development through the extracellular signal-regulated kinase signaling pathway. Collectively, our study unveils the crucial roles of sympathetic nerve signals in sustaining mammary development and regulating mammary stem cell activity, offering a novel perspective on the involvement of the nervous system in modulating adult stem cell function and organ development.

乳腺是一个动态器官,在产后发育的多个阶段都会发生重大变化。尽管对全身激素和微环境线索在乳腺稳态中的作用进行了广泛的研究,但对神经信号,尤其是交感神经系统信号的影响仍然知之甚少。在此,我们利用小鼠乳腺模型,深入研究了交感神经信号在乳腺干细胞和乳腺发育中的调控作用。我们的研究结果表明,交感神经信号的耗竭会导致青春期、成年期和妊娠期乳腺发育缺陷,并伴随着乳腺干细胞数量的减少。通过体外三维培养和体内移植分析,我们证明交感神经信号的缺失阻碍了乳腺干细胞的自我更新和再生,而交感神经信号的激活则促进了这些能力。从机制上讲,交感神经信号通过ERK信号通路协调乳腺干细胞活性和乳腺发育。总之,我们的研究揭示了交感神经信号在维持乳腺发育和调节乳腺干细胞活性中的关键作用,为神经系统参与调节成体干细胞功能和器官发育提供了一个新的视角。
{"title":"Sympathetic nerve signals: orchestrators of mammary development and stem cell vitality.","authors":"Zi Ye, Yu Xu, Mengna Zhang, Cheguo Cai","doi":"10.1093/jmcb/mjae020","DOIUrl":"10.1093/jmcb/mjae020","url":null,"abstract":"<p><p>The mammary gland is a dynamic organ that undergoes significant changes at multiple stages of postnatal development. Although the roles of systemic hormones and microenvironmental cues in mammary homeostasis have been extensively studied, the influence of neural signals, particularly those from the sympathetic nervous system, remains poorly understood. Here, using a mouse mammary gland model, we delved into the regulatory role of sympathetic nervous signaling in the context of mammary stem cells and mammary development. Our findings revealed that depletion of sympathetic nerve signals results in defective mammary development during puberty, adulthood, and pregnancy, accompanied by a reduction in mammary stem cell numbers. Through in vitro three-dimensional culture and in vivo transplantation analyses, we demonstrated that the absence of sympathetic nerve signals hinders mammary stem cell self-renewal and regeneration, while activation of sympathetic nervous signaling promotes these capacities. Mechanistically, sympathetic nerve signals orchestrate mammary stem cell activity and mammary development through the extracellular signal-regulated kinase signaling pathway. Collectively, our study unveils the crucial roles of sympathetic nerve signals in sustaining mammary development and regulating mammary stem cell activity, offering a novel perspective on the involvement of the nervous system in modulating adult stem cell function and organ development.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520406/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140916900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comments on 'Obstructive sleep apnea syndrome exacerbates NASH progression via selective autophagy-mediated Eepd1 degradation'. 关于 "阻塞性睡眠呼吸暂停综合征通过选择性自噬介导的 Eepd1 降解加剧 NASH 进展 "的评论
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-18 DOI: 10.1093/jmcb/mjae043
Jie Xiong, Suzhen Chen, Junli Liu
{"title":"Comments on 'Obstructive sleep apnea syndrome exacerbates NASH progression via selective autophagy-mediated Eepd1 degradation'.","authors":"Jie Xiong, Suzhen Chen, Junli Liu","doi":"10.1093/jmcb/mjae043","DOIUrl":"https://doi.org/10.1093/jmcb/mjae043","url":null,"abstract":"","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aurora B/AIR-2 regulates sister centromere resolution and CENP-A/HCP-3 organization to prevent merotelic attachments. 极光B/AIR-2调节姐妹中心粒的分辨和CENP-A/HCP-3的组织,以防止分生附着。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-16 DOI: 10.1093/jmcb/mjae045
Yue Wang, Charmaine Yan Yu Wong, Karen Wing Yee Yuen

During cell division, the accurate capture of sister kinetochores that are built on the centromeres of chromosomes by microtubules emanating from opposite spindle poles governs faithful chromosome segregation. To ensure sister chromatids separate correctly, sister centromeres undergo resolution to achieve bi-polar orientation prior to microtubule attachments. Failure of centromere resolution increases the frequency of merotelic attachments, with microtubules from opposite poles attaching to the same sister kinetochore, causing lagging chromosome, aneuploidy, and even cancer progression. The Aurora B-mediated tension-sensing machinery to correct erroneous kinetochore-microtubule attachments has been well studied. However, preventative mechanisms to avoid merotelic attachments that occur in the earlier mitotic stage are poorly understood. In this study, we found that inactivation of mitotic kinase Aurora B/AIR-2 increases merotelic attachments in Caenorhabditis elegans. On one hand, Aurora B/AIR-2-deficient cells exhibited a delay in the occurrence of centromere resolution and a disruption in targeting condensin II components to chromatin. On the other hand, loss of Aurora B/AIR-2 results in an increased localization of centromeric proteins CENP-A/HCP-3 and M18BP1/KNL-2 as well as the kinetochore protein MIS-12 on chromatin, which may generate ectopic kinetochores causing erroneous attachments. To conclude, this study elucidated that Aurora B/AIR-2 regulates sister centromere resolution and CENP-A/HCP-3 deposition to actively prevent merotely and chromosome instability in cells.

在细胞分裂过程中,来自纺锤体两极的微管准确捕捉染色体中心粒上的姊妹着丝点,是染色体忠实分离的关键。为确保姐妹染色单体正确分离,姐妹染色单体的中心粒在微管附着前要进行解析,以实现双极定向。如果中心粒解析失败,就会增加合并附着的频率,使来自两极的微管附着到同一个姐妹动核上,从而导致染色体滞后、非整倍体甚至癌症进展。人们已经对极光 B 介导的张力感应机制进行了深入研究,以纠正错误的动子核心-微管连接。然而,人们对避免有丝分裂早期阶段发生的有丝分裂附着的预防机制还知之甚少。在这项研究中,我们发现有丝分裂激酶极光 B/AIR-2 失活会增加秀丽隐杆线虫的有丝分裂附着。一方面,Aurora B/AIR-2缺失的细胞表现出中心粒解析的延迟,以及凝集素II成分靶向染色质的中断。另一方面,Aurora B/AIR-2缺失会导致中心粒蛋白CENP-A/HCP-3和M18BP1/KNL-2以及动点核蛋白MIS-12在染色质上的定位增加,从而可能产生异位动点核,造成错误的连接。总之,本研究阐明了极光B/AIR-2可调控姐妹中心粒解析和CENP-A/HCP-3沉积,从而积极防止细胞的分生和染色体不稳定。
{"title":"Aurora B/AIR-2 regulates sister centromere resolution and CENP-A/HCP-3 organization to prevent merotelic attachments.","authors":"Yue Wang, Charmaine Yan Yu Wong, Karen Wing Yee Yuen","doi":"10.1093/jmcb/mjae045","DOIUrl":"https://doi.org/10.1093/jmcb/mjae045","url":null,"abstract":"<p><p>During cell division, the accurate capture of sister kinetochores that are built on the centromeres of chromosomes by microtubules emanating from opposite spindle poles governs faithful chromosome segregation. To ensure sister chromatids separate correctly, sister centromeres undergo resolution to achieve bi-polar orientation prior to microtubule attachments. Failure of centromere resolution increases the frequency of merotelic attachments, with microtubules from opposite poles attaching to the same sister kinetochore, causing lagging chromosome, aneuploidy, and even cancer progression. The Aurora B-mediated tension-sensing machinery to correct erroneous kinetochore-microtubule attachments has been well studied. However, preventative mechanisms to avoid merotelic attachments that occur in the earlier mitotic stage are poorly understood. In this study, we found that inactivation of mitotic kinase Aurora B/AIR-2 increases merotelic attachments in Caenorhabditis elegans. On one hand, Aurora B/AIR-2-deficient cells exhibited a delay in the occurrence of centromere resolution and a disruption in targeting condensin II components to chromatin. On the other hand, loss of Aurora B/AIR-2 results in an increased localization of centromeric proteins CENP-A/HCP-3 and M18BP1/KNL-2 as well as the kinetochore protein MIS-12 on chromatin, which may generate ectopic kinetochores causing erroneous attachments. To conclude, this study elucidated that Aurora B/AIR-2 regulates sister centromere resolution and CENP-A/HCP-3 deposition to actively prevent merotely and chromosome instability in cells.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting HPV for the prevention, diagnosis, and treatment of Cervical Cancer. 以 HPV 为目标,预防、诊断和治疗宫颈癌。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-14 DOI: 10.1093/jmcb/mjae046
Huiling Ni, Canhua Huang, Zhi Ran, Shan Li, Chunmei Kuang, Yu Zhang, Kai Yuan

Despite advances in screening and prevention, cervical cancer (CC) remains an unresolved public health issue and poses a significant global challenge, particularly for women in low-income regions. Human papillomavirus (HPV) infection, especially with the high-risk strains, is a primary driver of cervical carcinogenesis. Emerging evidence indicates that integrating HPV testing with existing approaches, such as cervical cytology and visual inspection, offers enhanced sensitivity and specificity in CC screening. HPV infection-associated biomarkers, including HPV E6/E7 oncogenes, p16^INK4a, DNA methylation signatures, and non-coding RNAs, offer valuable insights into disease progression and the development of personalized interventions. Preventive and therapeutic vaccination against HPV, along with tertiary prevention strategies such as the use of antiviral and immune-modulating drugs for HPV-related lesions, show great clinical potential. At the mechanistic level, single-cell RNA sequencing analysis and the development of organoid models for HPV infection provide new cellular and molecular insights into HPV-related CC pathogenesis. This review focuses on the crucial roles of HPV in the prevention, diagnosis, and treatment of CC, with particular emphasis on the latest advancements in screening and disease intervention.

尽管在筛查和预防方面取得了进展,但宫颈癌(CC)仍然是一个尚未解决的公共卫生问题,尤其对低收入地区的妇女而言,它构成了一项重大的全球性挑战。人类乳头瘤病毒(HPV)感染,尤其是高危病毒株感染,是宫颈癌发生的主要驱动因素。新的证据表明,将 HPV 检测与宫颈细胞学和肉眼检查等现有方法相结合,可提高 CC 筛查的灵敏度和特异性。与 HPV 感染相关的生物标志物,包括 HPV E6/E7 致癌基因、p16^INK4a、DNA 甲基化特征和非编码 RNA,为了解疾病进展和制定个性化干预措施提供了宝贵的信息。针对人乳头瘤病毒的预防性和治疗性疫苗接种,以及三级预防策略,如针对人乳头瘤病毒相关病变使用抗病毒和免疫调节药物,都显示出巨大的临床潜力。在机理层面,单细胞 RNA 测序分析和类器官模型的开发为 HPV 相关 CC 的发病机制提供了新的细胞和分子见解。本综述重点讨论了HPV在CC的预防、诊断和治疗中的关键作用,特别强调了筛查和疾病干预方面的最新进展。
{"title":"Targeting HPV for the prevention, diagnosis, and treatment of Cervical Cancer.","authors":"Huiling Ni, Canhua Huang, Zhi Ran, Shan Li, Chunmei Kuang, Yu Zhang, Kai Yuan","doi":"10.1093/jmcb/mjae046","DOIUrl":"https://doi.org/10.1093/jmcb/mjae046","url":null,"abstract":"<p><p>Despite advances in screening and prevention, cervical cancer (CC) remains an unresolved public health issue and poses a significant global challenge, particularly for women in low-income regions. Human papillomavirus (HPV) infection, especially with the high-risk strains, is a primary driver of cervical carcinogenesis. Emerging evidence indicates that integrating HPV testing with existing approaches, such as cervical cytology and visual inspection, offers enhanced sensitivity and specificity in CC screening. HPV infection-associated biomarkers, including HPV E6/E7 oncogenes, p16^INK4a, DNA methylation signatures, and non-coding RNAs, offer valuable insights into disease progression and the development of personalized interventions. Preventive and therapeutic vaccination against HPV, along with tertiary prevention strategies such as the use of antiviral and immune-modulating drugs for HPV-related lesions, show great clinical potential. At the mechanistic level, single-cell RNA sequencing analysis and the development of organoid models for HPV infection provide new cellular and molecular insights into HPV-related CC pathogenesis. This review focuses on the crucial roles of HPV in the prevention, diagnosis, and treatment of CC, with particular emphasis on the latest advancements in screening and disease intervention.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cohesin ring gates are specialized for meiotic cell division. 粘合素环门专门用于减数分裂的细胞分裂。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-14 DOI: 10.1093/jmcb/mjae047
Yuanyuan Liu, Bohan Liu, Ruirui Zhang, Zixuan Zhu, Li Zhao, Ruijie Jiang, Yinghao Wang, Feifei Qi, Ruoxi Wang, Huijie Zhao, Jun Zhou, Jinmin Gao

Cohesin is a ring complex closed with SMC-1, SMC-3, and a kleisin subunit, mediating sister chromatid cohesion in mitosis and meiosis. Kleisin N- and C-terminal domains interact with SMC-3 and SMC-1, forming two distinct cohesin gates. Whether these gates are specialized for mitosis and meiosis remains elusive. Here, we create Caenorhabditis elegans mutants that express chimeric proteins swapping N- and C-terminal domains between different kleisins to investigate how these gates are specialized for different cell division programs. Replacing the meiotic REC-8 N-terminus with that of a cell division-unrelated kleisin COH-1 or the mitotic kleisin SCC-1 disrupts inter-sister chromatid cohesion and causes severe meiotic defects. Swapping the REC-8 C-terminus with that of COH-1 or SCC-1 largely retains the meiotic functions of REC-8 but causes age-related chromosome abnormalities. A specialized C-terminus is also required for the functions of SCC-1. Furthermore, point mutations in REC-8 C-terminus cause severe meiotic defects without impairing SMC-1-kleisin interaction, suggesting an integrated SMC-1-kleisin gate. These findings suggest the requirements for specialized cohesin gates in different biological processes.

凝聚素是一个由 SMC-1、SMC-3 和 kleisin 亚基组成的环状复合体,在有丝分裂和减数分裂过程中介导姐妹染色单体的内聚。Kleisin N 端和 C 端结构域与 SMC-3 和 SMC-1 相互作用,形成两个不同的粘合门。这些门是否专门用于有丝分裂和减数分裂仍未确定。在这里,我们创建了表达嵌合蛋白的秀丽隐杆线虫突变体,将不同克里蛋白的 N 端和 C 端结构域互换,以研究这些门如何专门用于不同的细胞分裂程序。用与细胞分裂无关的kleisin COH-1或有丝分裂kleisin SCC-1的N-端取代减数分裂期REC-8的N-端,会破坏姐妹染色单体间的内聚力并导致严重的减数分裂缺陷。将 REC-8 的 C 末端与 COH-1 或 SCC-1 的 C 末端互换后,REC-8 的减数分裂功能基本保留,但会导致与年龄相关的染色体异常。SCC-1 的功能也需要一个专门的 C 端。此外,REC-8 C末端的点突变会导致严重的减数分裂缺陷,但不会影响SMC-1-kleisin的相互作用,这表明SMC-1-kleisin有一个整合的闸门。这些发现表明,在不同的生物过程中需要专门的凝聚素门。
{"title":"Cohesin ring gates are specialized for meiotic cell division.","authors":"Yuanyuan Liu, Bohan Liu, Ruirui Zhang, Zixuan Zhu, Li Zhao, Ruijie Jiang, Yinghao Wang, Feifei Qi, Ruoxi Wang, Huijie Zhao, Jun Zhou, Jinmin Gao","doi":"10.1093/jmcb/mjae047","DOIUrl":"https://doi.org/10.1093/jmcb/mjae047","url":null,"abstract":"<p><p>Cohesin is a ring complex closed with SMC-1, SMC-3, and a kleisin subunit, mediating sister chromatid cohesion in mitosis and meiosis. Kleisin N- and C-terminal domains interact with SMC-3 and SMC-1, forming two distinct cohesin gates. Whether these gates are specialized for mitosis and meiosis remains elusive. Here, we create Caenorhabditis elegans mutants that express chimeric proteins swapping N- and C-terminal domains between different kleisins to investigate how these gates are specialized for different cell division programs. Replacing the meiotic REC-8 N-terminus with that of a cell division-unrelated kleisin COH-1 or the mitotic kleisin SCC-1 disrupts inter-sister chromatid cohesion and causes severe meiotic defects. Swapping the REC-8 C-terminus with that of COH-1 or SCC-1 largely retains the meiotic functions of REC-8 but causes age-related chromosome abnormalities. A specialized C-terminus is also required for the functions of SCC-1. Furthermore, point mutations in REC-8 C-terminus cause severe meiotic defects without impairing SMC-1-kleisin interaction, suggesting an integrated SMC-1-kleisin gate. These findings suggest the requirements for specialized cohesin gates in different biological processes.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HDAC7 promotes cardiomyocyte proliferation by suppressing Myocyte Enhancer Factor 2. HDAC7 通过抑制心肌细胞增强因子 2 促进心肌细胞增殖。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-11 DOI: 10.1093/jmcb/mjae044
Jihyun Jang, Mette Bentsen, Jin Bu, Ling Chen, Alexandre Rosa Campos, Mario Looso, Deqiang Li

Postnatal mammalian cardiomyocytes (CMs) rapidly lose proliferative capacity and exit the cell cycle and undergo further differentiation and maturation. Cell cycle activation has been a major strategy to stimulate postnatal CM proliferation, albeit achieving modest effects. One impediment is that postnatal CMs may need to undergo dedifferentiation before proliferation, if not simultaneously. Here, we report that overexpression of Hdac7 in neonatal mouse CMs results in significant CM dedifferentiation and proliferation. Mechanistically, we show that HDAC7-mediated CM proliferation is contingent on dedifferentiation, which is accomplished through suppressing MEF2. Hdac7 overexpression in CM shifts the chromatin state from binding MEF2, which favors the differentiation transcriptional program to AP-1, which favors the proliferative transcriptional program. Further, we found that HDAC7 interacts with minichromosome maintenance complex (MCM) components to initiate cell cycle progression. Our findings reveal that HDAC7 promotes CM proliferation by its dual action on CM dedifferentiation and proliferation, uncovering a potential new strategy for heart regeneration/repair.

哺乳动物出生后的心肌细胞(CMs)会迅速失去增殖能力,退出细胞周期并进一步分化和成熟。细胞周期激活一直是刺激出生后 CM 增殖的主要策略,尽管效果一般。一个障碍是,出生后的 CM 在增殖之前可能需要经历去分化,如果不是同时进行的话。在这里,我们报告了在新生小鼠 CM 中过表达 Hdac7 会导致 CM 明显的去分化和增殖。从机理上讲,我们发现 HDAC7 介导的 CM 增殖取决于去分化,而去分化是通过抑制 MEF2 实现的。Hdac7在CM中的过表达使染色质状态从有利于分化转录程序的MEF2结合状态转变为有利于增殖转录程序的AP-1结合状态。此外,我们还发现 HDAC7 与迷你染色体维护复合体(MCM)成分相互作用,启动细胞周期的进展。我们的研究结果表明,HDAC7通过对CM去分化和增殖的双重作用促进CM增殖,为心脏再生/修复揭示了一种潜在的新策略。
{"title":"HDAC7 promotes cardiomyocyte proliferation by suppressing Myocyte Enhancer Factor 2.","authors":"Jihyun Jang, Mette Bentsen, Jin Bu, Ling Chen, Alexandre Rosa Campos, Mario Looso, Deqiang Li","doi":"10.1093/jmcb/mjae044","DOIUrl":"https://doi.org/10.1093/jmcb/mjae044","url":null,"abstract":"<p><p>Postnatal mammalian cardiomyocytes (CMs) rapidly lose proliferative capacity and exit the cell cycle and undergo further differentiation and maturation. Cell cycle activation has been a major strategy to stimulate postnatal CM proliferation, albeit achieving modest effects. One impediment is that postnatal CMs may need to undergo dedifferentiation before proliferation, if not simultaneously. Here, we report that overexpression of Hdac7 in neonatal mouse CMs results in significant CM dedifferentiation and proliferation. Mechanistically, we show that HDAC7-mediated CM proliferation is contingent on dedifferentiation, which is accomplished through suppressing MEF2. Hdac7 overexpression in CM shifts the chromatin state from binding MEF2, which favors the differentiation transcriptional program to AP-1, which favors the proliferative transcriptional program. Further, we found that HDAC7 interacts with minichromosome maintenance complex (MCM) components to initiate cell cycle progression. Our findings reveal that HDAC7 promotes CM proliferation by its dual action on CM dedifferentiation and proliferation, uncovering a potential new strategy for heart regeneration/repair.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Molecular Cell Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1