首页 > 最新文献

Journal of Molecular Cell Biology最新文献

英文 中文
Probing centromere-kinetochore core complex CENP-L/M assembly using cenpemlin. 使用 cenpemlin 探测中心粒-着丝点核心复合体 CENP-L/M 的组装。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-09-06 DOI: 10.1093/jmcb/mjae035
Olanrewaju Ayodeji Durojaye, Fengrui Yang, Xinjiao Gao, Felix Aikhionbare, Liangyu Zhang, Xing Liu, Xuebiao Yao
{"title":"Probing centromere-kinetochore core complex CENP-L/M assembly using cenpemlin.","authors":"Olanrewaju Ayodeji Durojaye, Fengrui Yang, Xinjiao Gao, Felix Aikhionbare, Liangyu Zhang, Xing Liu, Xuebiao Yao","doi":"10.1093/jmcb/mjae035","DOIUrl":"https://doi.org/10.1093/jmcb/mjae035","url":null,"abstract":"","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Mitochondrial aldehyde dehydrogenase rescues against diabetic cardiomyopathy through GSK3β-mediated preservation of mitochondrial integrity and Parkin-mediated mitophagy. 更正为线粒体醛脱氢酶通过 GSK3β 介导的线粒体完整性保护和 Parkin 介导的有丝分裂,拯救糖尿病心肌病。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-09-04 DOI: 10.1093/jmcb/mjae032
{"title":"Correction to: Mitochondrial aldehyde dehydrogenase rescues against diabetic cardiomyopathy through GSK3β-mediated preservation of mitochondrial integrity and Parkin-mediated mitophagy.","authors":"","doi":"10.1093/jmcb/mjae032","DOIUrl":"https://doi.org/10.1093/jmcb/mjae032","url":null,"abstract":"","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PHLDA2 is critical for p53-mediated ferroptosis and tumor suppression. PHLDA2 对 p53 介导的铁变态反应和肿瘤抑制至关重要。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-08-29 DOI: 10.1093/jmcb/mjae033
Xin Yang, Wei Gu
{"title":"PHLDA2 is critical for p53-mediated ferroptosis and tumor suppression.","authors":"Xin Yang, Wei Gu","doi":"10.1093/jmcb/mjae033","DOIUrl":"https://doi.org/10.1093/jmcb/mjae033","url":null,"abstract":"","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comments on 'Adeno-to-squamous transition drives resistance to KRAS inhibition in LKB1 mutant lung cancer'. 关于 "LKB1突变型肺癌中腺癌向鳞癌转化驱动对KRAS抑制剂的耐药性 "的评论
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-08-26 DOI: 10.1093/jmcb/mjae013
Xinyuan Tong, Ningxia Zhang, Yun Xue, Hongbin Ji
{"title":"Comments on 'Adeno-to-squamous transition drives resistance to KRAS inhibition in LKB1 mutant lung cancer'.","authors":"Xinyuan Tong, Ningxia Zhang, Yun Xue, Hongbin Ji","doi":"10.1093/jmcb/mjae013","DOIUrl":"10.1093/jmcb/mjae013","url":null,"abstract":"","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140326689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of m6Am RNA modification and its implications in human diseases. m6Am RNA修饰的调控及其对人类疾病的影响。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-08-26 DOI: 10.1093/jmcb/mjae012
Hao Jin, Zhouyuanjing Shi, Tianhua Zhou, Shanshan Xie

N 6,2'-O-dimethyladenosine (m6Am) is a prevalent modification frequently found at the 5' cap-adjacent adenosine of messenger RNAs (mRNAs) and small nuclear RNAs (snRNAs) and the internal adenosine of snRNAs. This dynamic and reversible modification is under the regulation of methyltransferases phosphorylated CTD interacting factor 1 and methyltransferase-like protein 4, along with the demethylase fat mass and obesity-associated protein. m6Am RNA modification plays a crucial role in the regulation of pre-mRNA splicing, mRNA stability, and translation, thereby influencing gene expression. In recent years, there has been growing interest in exploring the functions of m6Am and its relevance to human diseases. In this review, we provide a comprehensive overview of the current knowledge concerning m6Am, with a focus on m6Am-modifying enzymes, sequencing approaches for its detection, and its impacts on pre-mRNA splicing, mRNA stability, and translation regulation. Furthermore, we highlight the roles of m6Am in the context of obesity, viral infections, and cancers, unravelling its underlying regulatory mechanisms.

N 6,2'-O-二甲基腺苷(m6Am)是一种常见的修饰,经常出现在 mRNA 和 snRNA 的 5'帽旁腺苷以及 snRNA 的内部腺苷上。m6Am RNA 修饰在调控前 mRNA 剪接、mRNA 稳定性和翻译,从而影响基因表达方面起着至关重要的作用。近年来,人们对探索 m6Am 的功能及其与人类疾病的相关性越来越感兴趣。在这篇综述中,我们全面概述了目前有关 m6Am 的知识,重点介绍了 m6Am 修饰酶、其检测测序方法及其对前 mRNA 剪接、mRNA 稳定性和翻译调控的影响。此外,我们还强调了 m6Am 在肥胖、病毒感染和癌症中的作用,并揭示了其潜在的调控机制。
{"title":"Regulation of m6Am RNA modification and its implications in human diseases.","authors":"Hao Jin, Zhouyuanjing Shi, Tianhua Zhou, Shanshan Xie","doi":"10.1093/jmcb/mjae012","DOIUrl":"10.1093/jmcb/mjae012","url":null,"abstract":"<p><p>N 6,2'-O-dimethyladenosine (m6Am) is a prevalent modification frequently found at the 5' cap-adjacent adenosine of messenger RNAs (mRNAs) and small nuclear RNAs (snRNAs) and the internal adenosine of snRNAs. This dynamic and reversible modification is under the regulation of methyltransferases phosphorylated CTD interacting factor 1 and methyltransferase-like protein 4, along with the demethylase fat mass and obesity-associated protein. m6Am RNA modification plays a crucial role in the regulation of pre-mRNA splicing, mRNA stability, and translation, thereby influencing gene expression. In recent years, there has been growing interest in exploring the functions of m6Am and its relevance to human diseases. In this review, we provide a comprehensive overview of the current knowledge concerning m6Am, with a focus on m6Am-modifying enzymes, sequencing approaches for its detection, and its impacts on pre-mRNA splicing, mRNA stability, and translation regulation. Furthermore, we highlight the roles of m6Am in the context of obesity, viral infections, and cancers, unravelling its underlying regulatory mechanisms.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345611/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140175129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A polarized multicomponent foundation upholds ciliary central microtubules. 纤毛中心微管由极化的多成分基础支撑。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-08-20 DOI: 10.1093/jmcb/mjae031
Qingxia Chen, Huijie Zhao, Xinwen Pan, Chuyu Fang, Benhua Qiu, Jingting Guo, Xiumin Yan, Xueliang Zhu

Cilia's back-and-forth beat pattern requires a central pair (CP) of microtubules. However, the mechanism by which the CP is upheld above the transition zone (TZ) remains unclear. Here, we showed that a rod-like substructure marked by Cep131 and ciliary Centrin serves as a polarized CP-supporting foundation. This CP-foundation (CPF) was assembled independently of the CP during ciliogenesis in mouse ependymal cells. It protruded from the distal end of the basal body out of the TZ to enwrap the proximal end of the CP. Through proximity labeling, we identified 26 potential CPF components, among which Ccdc148 specifically localized at the proximal region of Centrin-decorated CPF and was complementary to the Cep131-enriched distal region. Cep131 deficiency abolished the CPF, resulting in CP penetration into the TZ. Consequently, cilia became prone to ultrastructural abnormality and paralysis, and Cep131-deficient mice were susceptible to late-onset hydrocephalus. In addition to Centrin, phylogenetic analysis also indicated conservations of Ccdc131 and Ccdc148 from protists to mammals, suggesting that the CPF is an evolutionarily conserved multicomponent CP-supporting platform in cilia.

纤毛的前后跳动模式需要一对中央微管(CP)。然而,CP 在过渡区(TZ)上方的支撑机制仍不清楚。在这里,我们发现了一种由 Cep131 和纤毛中心蛋白标记的杆状子结构,它是极化的 CP 支撑基础。在小鼠上皮细胞的纤毛发生过程中,这种CP基础(CPF)是独立于CP组装的。它从基底体的远端伸出TZ,包裹着CP的近端。通过近距离标记,我们鉴定出了26种潜在的CPF成分,其中Ccdc148特异性定位于Centrin装饰的CPF近端区域,并与Cep131富集的远端区域互补。Cep131 缺乏会破坏 CPF,导致 CP 穿透 TZ。因此,纤毛容易出现超微结构异常和瘫痪,Cep131缺陷小鼠容易患晚期脑积水。除了Centrin之外,系统发育分析还表明从原生动物到哺乳动物都保留了Ccdc131和Ccdc148,这表明CPF是纤毛中进化保守的多组分CP支持平台。
{"title":"A polarized multicomponent foundation upholds ciliary central microtubules.","authors":"Qingxia Chen, Huijie Zhao, Xinwen Pan, Chuyu Fang, Benhua Qiu, Jingting Guo, Xiumin Yan, Xueliang Zhu","doi":"10.1093/jmcb/mjae031","DOIUrl":"https://doi.org/10.1093/jmcb/mjae031","url":null,"abstract":"<p><p>Cilia's back-and-forth beat pattern requires a central pair (CP) of microtubules. However, the mechanism by which the CP is upheld above the transition zone (TZ) remains unclear. Here, we showed that a rod-like substructure marked by Cep131 and ciliary Centrin serves as a polarized CP-supporting foundation. This CP-foundation (CPF) was assembled independently of the CP during ciliogenesis in mouse ependymal cells. It protruded from the distal end of the basal body out of the TZ to enwrap the proximal end of the CP. Through proximity labeling, we identified 26 potential CPF components, among which Ccdc148 specifically localized at the proximal region of Centrin-decorated CPF and was complementary to the Cep131-enriched distal region. Cep131 deficiency abolished the CPF, resulting in CP penetration into the TZ. Consequently, cilia became prone to ultrastructural abnormality and paralysis, and Cep131-deficient mice were susceptible to late-onset hydrocephalus. In addition to Centrin, phylogenetic analysis also indicated conservations of Ccdc131 and Ccdc148 from protists to mammals, suggesting that the CPF is an evolutionarily conserved multicomponent CP-supporting platform in cilia.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142010230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling gastric intestinal metaplasia in 3D organoids using nitrosoguanidine. 利用亚硝基胍在三维有机体中模拟胃肠化生。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-08-17 DOI: 10.1093/jmcb/mjae030
Yuan Li, Jiena Chen, Tao Li, Jie Lin, Haocheng Zheng, Nadia Johnson, Xuebiao Yao, Xia Ding

Gastric intestinal metaplasia (GIM) represents a precancerous stage characterized by morphological and pathophysiological changes in the gastric mucosa, where gastric epithelial cells transform into a phenotype resembling that of intestinal cells. Previous studies have demonstrated that the intragastric administration of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) induces both gastric carcinoma and intestinal metaplasia in mice. Here, we show that MNNG induces GIM in three-dimensional (3D) mouse organoids. Our histological analyses reveal that MNNG-induced gastric organoids undergo classical morphological alterations, exhibiting a distinct up-regulation of CDX2 and MUC2, along with a down-regulation of ATP4B and MUC6. Importantly, metaplastic cells observed in MNNG-treated organoids originate from MIST1+ cells, indicating their gastric chief cell lineage. Functional analyses show that activation of the RAS signaling pathway drives MNNG-induced metaplasia in 3D organoids, mirroring the characteristics observed in human GIM. Consequently, modeling intestinal metaplasia using 3D organoids offers valuable insights into the molecular mechanisms and spatiotemporal dynamics of the gastric epithelial lineage during the development of intestinal metaplasia within the gastric mucosa. We conclude that the MNNG-induced metaplasia model utilizing 3D organoids provides a robust platform for developing preventive and therapeutic strategies to mitigate the risk of gastric cancer before precancerous lesions occur.

胃肠化生(GIM)是以胃黏膜形态和病理生理变化为特征的癌前病变阶段,在这一阶段,胃上皮细胞转变为类似肠细胞的表型。以前的研究表明,胃内注射 N-甲基-N'-硝基-N-亚硝基胍(MNNG)可诱导小鼠发生胃癌和肠化生。在这里,我们发现 MNNG 能诱导三维(3D)小鼠器官组织中的 GIM。我们的组织学分析表明,MNNG诱导的胃器官组织发生了典型的形态学改变,表现出CDX2和MUC2的明显上调,以及ATP4B和MUC6的下调。重要的是,在经 MNNG 处理的器官组织中观察到的移形细胞来源于 MIST1+ 细胞,这表明它们是胃首领细胞系。功能分析显示,RAS信号通路的激活驱动了MNNG诱导的三维有机体内的移行细胞,反映了在人类GIM中观察到的特征。因此,利用三维有机体建立肠化生模型为了解胃粘膜内肠化生发展过程中胃上皮系的分子机制和时空动态提供了宝贵的见解。我们的结论是,利用三维有机体的MNNG诱导化生模型为开发预防和治疗策略提供了一个强大的平台,可在癌前病变发生之前降低胃癌风险。
{"title":"Modeling gastric intestinal metaplasia in 3D organoids using nitrosoguanidine.","authors":"Yuan Li, Jiena Chen, Tao Li, Jie Lin, Haocheng Zheng, Nadia Johnson, Xuebiao Yao, Xia Ding","doi":"10.1093/jmcb/mjae030","DOIUrl":"https://doi.org/10.1093/jmcb/mjae030","url":null,"abstract":"<p><p>Gastric intestinal metaplasia (GIM) represents a precancerous stage characterized by morphological and pathophysiological changes in the gastric mucosa, where gastric epithelial cells transform into a phenotype resembling that of intestinal cells. Previous studies have demonstrated that the intragastric administration of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) induces both gastric carcinoma and intestinal metaplasia in mice. Here, we show that MNNG induces GIM in three-dimensional (3D) mouse organoids. Our histological analyses reveal that MNNG-induced gastric organoids undergo classical morphological alterations, exhibiting a distinct up-regulation of CDX2 and MUC2, along with a down-regulation of ATP4B and MUC6. Importantly, metaplastic cells observed in MNNG-treated organoids originate from MIST1+ cells, indicating their gastric chief cell lineage. Functional analyses show that activation of the RAS signaling pathway drives MNNG-induced metaplasia in 3D organoids, mirroring the characteristics observed in human GIM. Consequently, modeling intestinal metaplasia using 3D organoids offers valuable insights into the molecular mechanisms and spatiotemporal dynamics of the gastric epithelial lineage during the development of intestinal metaplasia within the gastric mucosa. We conclude that the MNNG-induced metaplasia model utilizing 3D organoids provides a robust platform for developing preventive and therapeutic strategies to mitigate the risk of gastric cancer before precancerous lesions occur.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sterile activation of RNA-sensing pathways in autoimmunity. 无菌激活自身免疫中的 RNA 传感途径
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-08-14 DOI: 10.1093/jmcb/mjae029
Jiaxin Li, Junyan Zhu, Hui Yang, Fajian Hou

RNA-sensing pathways play a pivotal role in host defense against pathogenic infections to maintain cellular homeostasis. However, even in the absence of infection, certain endogenous self-RNAs still serve as the activators of RNA-sensing pathways. The inappropriate activation of RNA sensors by self-ligands leads to systemic inflammation and autoimmune diseases. In this review, we summarize current findings on the sterile activation of RNA sensors, as well as its implications in autoimmunity, inflammatory diseases, and therapeutics.

在宿主抵御病原体感染以维持细胞平衡的过程中,RNA 感知通路发挥着关键作用。然而,即使在没有感染的情况下,某些内源性自身 RNA 仍是 RNA 感知通路的激活剂。自身配体对 RNA 传感器的不适当激活会导致全身性炎症和自身免疫性疾病。在这篇综述中,我们总结了目前关于 RNA 感测器无菌激活的研究结果,以及它在自身免疫、炎症性疾病和治疗中的意义。
{"title":"Sterile activation of RNA-sensing pathways in autoimmunity.","authors":"Jiaxin Li, Junyan Zhu, Hui Yang, Fajian Hou","doi":"10.1093/jmcb/mjae029","DOIUrl":"https://doi.org/10.1093/jmcb/mjae029","url":null,"abstract":"<p><p>RNA-sensing pathways play a pivotal role in host defense against pathogenic infections to maintain cellular homeostasis. However, even in the absence of infection, certain endogenous self-RNAs still serve as the activators of RNA-sensing pathways. The inappropriate activation of RNA sensors by self-ligands leads to systemic inflammation and autoimmune diseases. In this review, we summarize current findings on the sterile activation of RNA sensors, as well as its implications in autoimmunity, inflammatory diseases, and therapeutics.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141982557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual role of PpV in Drosophila crystal cell proliferation and survival. PpV 在果蝇晶体细胞增殖和存活中的双重作用
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-07-31 DOI: 10.1093/jmcb/mjae028
Wang Luo, Fang Zhang, Fangzhen Zhao, Yang Fang, Long Zhao, Ying Su

Drosophila melanogaster crystal cells are a specialized type of blood cells for innate immune process upon injury. Under normal conditions, crystal cells rarely proliferate and constitute a small proportion of fly blood cells. Notch signaling has been known to guide the cell fate determination of crystal cells and maintain their survival. Here, we reported that protein phosphatase V (PpV), the unique catalytic subunit of protein phosphatase 6 in Drosophila, is a novel regulator of crystal cell proliferation and integrity. We found that PpV proteins highly accumulated in crystal cells in the larval hematopoietic organ termed the lymph gland. Silencing PpV using RNA interference led to increased crystal cell proliferation in a Notch-independent manner and induced crystal cell rupture dependent on Notch signaling. Moreover, additive PpV prevented the rupture of crystal cells in lymph glands upon a needle injury, suggesting the involvement of PpV in wound healing. Altogether, our results indicated that PpV plays a dual role in lymph glands, preventing crystal cell proliferation to limit the cell number, as well as inhibiting crystal cell rupture to maintain their survival.

黑腹果蝇晶体细胞是一种特化的血细胞,用于受伤后的先天免疫过程。在正常情况下,晶体细胞很少增殖,只占蝇血细胞的一小部分。众所周知,Notch 信号可引导晶体细胞的命运决定并维持其存活。在这里,我们报告了蛋白磷酸酶 V(PpV),果蝇蛋白磷酸酶 6 的独特催化亚基,是晶体细胞增殖和完整性的新型调节因子。我们发现,PpV 蛋白在幼虫造血器官(即淋巴腺)的晶体细胞中高度积累。利用 RNA 干扰沉默 PpV 可导致晶体细胞增殖增加,但不依赖于 Notch 信号,晶体细胞破裂也依赖于 Notch 信号。此外,添加 PpV 可防止针刺伤后淋巴腺中晶体细胞的破裂,这表明 PpV 参与了伤口愈合。总之,我们的研究结果表明,PpV 在淋巴腺中发挥着双重作用,既能阻止晶体细胞增殖以限制细胞数量,又能抑制晶体细胞破裂以维持其存活。
{"title":"Dual role of PpV in Drosophila crystal cell proliferation and survival.","authors":"Wang Luo, Fang Zhang, Fangzhen Zhao, Yang Fang, Long Zhao, Ying Su","doi":"10.1093/jmcb/mjae028","DOIUrl":"https://doi.org/10.1093/jmcb/mjae028","url":null,"abstract":"<p><p>Drosophila melanogaster crystal cells are a specialized type of blood cells for innate immune process upon injury. Under normal conditions, crystal cells rarely proliferate and constitute a small proportion of fly blood cells. Notch signaling has been known to guide the cell fate determination of crystal cells and maintain their survival. Here, we reported that protein phosphatase V (PpV), the unique catalytic subunit of protein phosphatase 6 in Drosophila, is a novel regulator of crystal cell proliferation and integrity. We found that PpV proteins highly accumulated in crystal cells in the larval hematopoietic organ termed the lymph gland. Silencing PpV using RNA interference led to increased crystal cell proliferation in a Notch-independent manner and induced crystal cell rupture dependent on Notch signaling. Moreover, additive PpV prevented the rupture of crystal cells in lymph glands upon a needle injury, suggesting the involvement of PpV in wound healing. Altogether, our results indicated that PpV plays a dual role in lymph glands, preventing crystal cell proliferation to limit the cell number, as well as inhibiting crystal cell rupture to maintain their survival.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antiviral factors and their counteraction by HIV-1: many uncovered and more to be discovered. 抗病毒因子及其对 HIV-1 的反作用:发现了许多,还有更多有待发现。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-07-29 DOI: 10.1093/jmcb/mjae005
Dorota Kmiec, Frank Kirchhoff

Extensive studies on HIV-1 have led to the discovery of a variety of structurally and functionally diverse innate defense factors that target various steps of the retroviral replication cycle. Some of them, such as APOBEC3, tetherin, and SERINC5, are well established. Their importance is evident from the fact that HIV-1 uses its accessory proteins Vif, Vpu, and Nef to counteract them. However, the list of antiviral factors is constantly increasing, and accumulating evidence suggests that innate defense mechanisms, which restrict HIV-1 and/or are counteracted by viral proteins, remain to be discovered. These antiviral factors are relevant to diseases other than HIV/AIDS, since they are commonly active against various viral pathogens. In this review, we provide an overview of recently reported antiretroviral factors and viral countermeasures, present the evidence suggesting that more innate defense mechanisms remain to be discovered, and discuss why this is a challenging but rewarding task.

对 HIV-1 的广泛研究发现了多种结构和功能各异的先天防御因子,这些因子针对逆转录病毒复制周期的各个步骤。其中一些因子,如 APOBEC3、tetherin 和 SERINC5 等,已经得到公认。HIV-1 利用其附属蛋白 Vif、Vpu 和 Nef 来对抗这些因子,由此可见它们的重要性。然而,抗病毒因子的清单还在不断增加,它们限制 HIV-1 和/或如何被病毒蛋白抵消的先天防御机制仍有待发现。这些抗病毒因子与艾滋病毒/艾滋病以外的其他疾病也有关系,因为它们通常对各种病毒病原体具有活性。在这篇综述中,我们概述了最近报道的抗逆转录病毒因子和病毒对策,提出了表明仍有更多先天防御机制有待发现的证据,并讨论了为什么这是一项具有挑战性但有价值的任务。
{"title":"Antiviral factors and their counteraction by HIV-1: many uncovered and more to be discovered.","authors":"Dorota Kmiec, Frank Kirchhoff","doi":"10.1093/jmcb/mjae005","DOIUrl":"10.1093/jmcb/mjae005","url":null,"abstract":"<p><p>Extensive studies on HIV-1 have led to the discovery of a variety of structurally and functionally diverse innate defense factors that target various steps of the retroviral replication cycle. Some of them, such as APOBEC3, tetherin, and SERINC5, are well established. Their importance is evident from the fact that HIV-1 uses its accessory proteins Vif, Vpu, and Nef to counteract them. However, the list of antiviral factors is constantly increasing, and accumulating evidence suggests that innate defense mechanisms, which restrict HIV-1 and/or are counteracted by viral proteins, remain to be discovered. These antiviral factors are relevant to diseases other than HIV/AIDS, since they are commonly active against various viral pathogens. In this review, we provide an overview of recently reported antiretroviral factors and viral countermeasures, present the evidence suggesting that more innate defense mechanisms remain to be discovered, and discuss why this is a challenging but rewarding task.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334937/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139691970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Molecular Cell Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1