Improved Performance of High-Entropy Disordered Rocksalt Oxyfluoride Cathode by Atomic Layer Deposition Coating for Li-Ion Batteries

Bei Zhou, Siyu An, David Kitsche, Sören L. Dreyer, Kai Wang, Xiaohui Huang, Jannik Thanner, Matteo Bianchini, Torsten Brezesinski, Ben Breitung, Horst Hahn, Qingsong Wang
{"title":"Improved Performance of High-Entropy Disordered Rocksalt Oxyfluoride Cathode by Atomic Layer Deposition Coating for Li-Ion Batteries","authors":"Bei Zhou, Siyu An, David Kitsche, Sören L. Dreyer, Kai Wang, Xiaohui Huang, Jannik Thanner, Matteo Bianchini, Torsten Brezesinski, Ben Breitung, Horst Hahn, Qingsong Wang","doi":"10.1002/sstr.202400005","DOIUrl":null,"url":null,"abstract":"Lithium-excess cation-disordered rocksalt materials are a promising class of transition metal-based cathodes that exhibit high specific capacity and energy density. The exceptional performance is achieved through participation of anionic redox in addition to cationic redox reactions in the electrochemistry. However, anionic redox reactions accompanied by oxygen evolution, accelerated electrolyte breakdown, and structural evolution lead to voltage hysteresis and low initial Coulombic efficiency. Herein, an Al<sub>2</sub>O<sub>3</sub> layer with varying thickness has been coated onto a high-entropy disordered rocksalt oxyfluoride cathode through atomic layer deposition to enhance battery performance. The results indicate that the utilization of a uniform Al<sub>2</sub>O<sub>3</sub> coating improves the capacity retention and rate capability of the cathode, with the performance being strongly dependent on the layer thickness. Further investigation into cathode–electrolyte interfacial reactions reveals that the thin protecting Al<sub>2</sub>O<sub>3</sub> coating can reduce the decomposition of electrolyte on the cathode surface but cannot prevent bulk phase degradation during prolonged cycling. These findings highlight the need for optimized coating design on the disordered rocksalt cathode to improve battery performance.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202400005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-excess cation-disordered rocksalt materials are a promising class of transition metal-based cathodes that exhibit high specific capacity and energy density. The exceptional performance is achieved through participation of anionic redox in addition to cationic redox reactions in the electrochemistry. However, anionic redox reactions accompanied by oxygen evolution, accelerated electrolyte breakdown, and structural evolution lead to voltage hysteresis and low initial Coulombic efficiency. Herein, an Al2O3 layer with varying thickness has been coated onto a high-entropy disordered rocksalt oxyfluoride cathode through atomic layer deposition to enhance battery performance. The results indicate that the utilization of a uniform Al2O3 coating improves the capacity retention and rate capability of the cathode, with the performance being strongly dependent on the layer thickness. Further investigation into cathode–electrolyte interfacial reactions reveals that the thin protecting Al2O3 coating can reduce the decomposition of electrolyte on the cathode surface but cannot prevent bulk phase degradation during prolonged cycling. These findings highlight the need for optimized coating design on the disordered rocksalt cathode to improve battery performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过原子层沉积涂层提高锂离子电池用高熵无序氟化岩氧阴极的性能
锂过阳离子有序岩盐材料是一类很有前途的过渡金属基阴极,具有很高的比容量和能量密度。除了阳离子氧化还原反应之外,阴离子氧化还原反应也参与了电化学过程,从而实现了卓越的性能。然而,阴离子氧化还原反应伴随着氧演化、电解质加速分解和结构演化,导致电压滞后和初始库仑效率低下。在此,我们通过原子层沉积在高熵无序氟化岩氧阴极上镀上了不同厚度的 Al2O3 层,以提高电池性能。结果表明,利用均匀的 Al2O3 涂层可提高阴极的容量保持率和速率能力,其性能与涂层厚度密切相关。对阴极-电解质界面反应的进一步研究表明,薄的 Al2O3 保护涂层可以减少阴极表面电解质的分解,但不能防止长时间循环过程中的体相降解。这些发现凸显了在无序的岩盐阴极上优化涂层设计以提高电池性能的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
期刊最新文献
Mesoporous Silica Nanoparticle Grafted Polypropylene Membrane toward Long-Term Efficient Oxygenation Thermal Methanol Synthesis from CO2 Using Cu/ZnO Catalysts: Insights from First-Principles Calculations Modulating Alkyl Groups in Copolymer to Control Ion Transport in Electrolyte-Gated Organic Transistors for Neuromorphic Computing Monodispersed Iron Selenide Nanoparticles United with Carbon Nanotubes for Highly Reversible Zinc–Air Batteries Clustered VCoCOx Nanosheets Anchored on MXene–Ti3C2@NF as a Superior Bifunctional Electrocatalyst for Alkaline Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1