R. L. Hendricks, N. Olsen, M. Thornton, P. Hatzenbuehler
{"title":"Use of an Impact Recording Device to Determine the Risk of Bruising in Packaged Potatoes","authors":"R. L. Hendricks, N. Olsen, M. Thornton, P. Hatzenbuehler","doi":"10.1007/s12230-024-09952-8","DOIUrl":null,"url":null,"abstract":"<div><p>Handling potatoes individually or collectively in packages can create opportunities for potatoes to develop quality defects including blackspot and shatter bruise. Three trials were conducted to examine how handling packaged potatoes can influence the risk for physical damage including shatter and blackspot bruise. An impact recording device was used to record peak acceleration (max g-force) in common fresh market packaging options (boxes or bales) at four drop heights (15 to 91 cm) on to three different surface types. When boxed potatoes were dropped onto concrete or a plastic slip, the potatoes on the bottom of the box had the highest risk of damage (greater than 100 g-force). When drop heights were lowered, or when cushioning material was added to hard surfaces (e.g., wooden pallet on top of concrete floor), the risk for impact damage was decreased throughout the box. When palletizing boxed potatoes, the risk of bruise decreased after the first layer was stacked on the pallet. Drop heights need to be below 15 cm, especially when making the first layer in a palletized stack of packaged potatoes to reduce potential bruising. The risk of high peak accelerations was not seen in the dropped or stationary bales for any of the drop heights examined. This study provided information for educating personnel on handling packaged potatoes and determining situations in which robotic stacking equipment needs to be adjusted to lower drop heights of packaged potatoes.</p></div>","PeriodicalId":7596,"journal":{"name":"American Journal of Potato Research","volume":"101 2","pages":"142 - 152"},"PeriodicalIF":1.2000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12230-024-09952-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Potato Research","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12230-024-09952-8","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Handling potatoes individually or collectively in packages can create opportunities for potatoes to develop quality defects including blackspot and shatter bruise. Three trials were conducted to examine how handling packaged potatoes can influence the risk for physical damage including shatter and blackspot bruise. An impact recording device was used to record peak acceleration (max g-force) in common fresh market packaging options (boxes or bales) at four drop heights (15 to 91 cm) on to three different surface types. When boxed potatoes were dropped onto concrete or a plastic slip, the potatoes on the bottom of the box had the highest risk of damage (greater than 100 g-force). When drop heights were lowered, or when cushioning material was added to hard surfaces (e.g., wooden pallet on top of concrete floor), the risk for impact damage was decreased throughout the box. When palletizing boxed potatoes, the risk of bruise decreased after the first layer was stacked on the pallet. Drop heights need to be below 15 cm, especially when making the first layer in a palletized stack of packaged potatoes to reduce potential bruising. The risk of high peak accelerations was not seen in the dropped or stationary bales for any of the drop heights examined. This study provided information for educating personnel on handling packaged potatoes and determining situations in which robotic stacking equipment needs to be adjusted to lower drop heights of packaged potatoes.
期刊介绍:
The American Journal of Potato Research (AJPR), the journal of the Potato Association of America (PAA), publishes reports of basic and applied research on the potato, Solanum spp. It presents authoritative coverage of new scientific developments in potato science, including biotechnology, breeding and genetics, crop management, disease and pest research, economics and marketing, nutrition, physiology, and post-harvest handling and quality. Recognized internationally by contributors and readership, it promotes the exchange of information on all aspects of this fast-evolving global industry.