{"title":"The emerging role of CARM1 in cancer","authors":"Zizhuo Xie, Yuan Tian, Xiaohan Guo, Na Xie","doi":"10.1007/s13402-024-00943-9","DOIUrl":null,"url":null,"abstract":"<p>Coactivator-associated arginine methyltransferase 1 (CARM1), pivotal for catalyzing arginine methylation of histone and non-histone proteins, plays a crucial role in developing various cancers. CARM1 was initially recognized as a transcriptional coregulator by orchestrating chromatin remodeling, transcription regulation, mRNA splicing and stability. This diverse functionality contributes to the recruitment of transcription factors that foster malignancies. Going beyond its established involvement in transcriptional control, CARM1-mediated methylation influences a spectrum of biological processes, including the cell cycle, metabolism, autophagy, redox homeostasis, and inflammation. By manipulating these physiological functions, CARM1 becomes essential in critical processes such as tumorigenesis, metastasis, and therapeutic resistance. Consequently, it emerges as a viable target for therapeutic intervention and a possible biomarker for medication response in specific cancer types. This review provides a comprehensive exploration of the various physiological functions of CARM1 in the context of cancer. Furthermore, we discuss potential CARM1-targeting pharmaceutical interventions for cancer therapy.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-024-00943-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1), pivotal for catalyzing arginine methylation of histone and non-histone proteins, plays a crucial role in developing various cancers. CARM1 was initially recognized as a transcriptional coregulator by orchestrating chromatin remodeling, transcription regulation, mRNA splicing and stability. This diverse functionality contributes to the recruitment of transcription factors that foster malignancies. Going beyond its established involvement in transcriptional control, CARM1-mediated methylation influences a spectrum of biological processes, including the cell cycle, metabolism, autophagy, redox homeostasis, and inflammation. By manipulating these physiological functions, CARM1 becomes essential in critical processes such as tumorigenesis, metastasis, and therapeutic resistance. Consequently, it emerges as a viable target for therapeutic intervention and a possible biomarker for medication response in specific cancer types. This review provides a comprehensive exploration of the various physiological functions of CARM1 in the context of cancer. Furthermore, we discuss potential CARM1-targeting pharmaceutical interventions for cancer therapy.
Cellular OncologyBiochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
10.40
自引率
1.50%
发文量
0
审稿时长
16 weeks
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.