首页 > 最新文献

Cellular Oncology最新文献

英文 中文
Regulatory mechanisms of steroid hormone receptors on gene transcription through chromatin interaction and enhancer reprogramming. 类固醇激素受体通过染色质相互作用和增强子重编程对基因转录的调控机制。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2024-11-14 DOI: 10.1007/s13402-024-01011-y
Ge Sun, Chunguang Zhao, Jing Han, Shaoya Wu, Yan Chen, Jing Yao, Li Li

Regulation of steroid hormone receptors (SHRs) on transcriptional reprogramming is crucial for breast cancer progression. SHRs, including estrogen receptor (ER), androgen receptor (AR), progesterone receptor (PR), and glucocorticoid receptor (GR) play key roles in remodeling the transcriptome of breast cancer cells. However, the molecular mechanisms by which SHRs regulate chromatin landscape in enhancer regions and transcription factor interactions remain largely unknown. In this review, we summarized the regulatory effects of 3 types of SHRs (AR, PR, and GR) on gene transcription through chromatin interactions and enhancer reprogramming. Specifically, AR and PR exhibit bi-directional regulatory effects (both inhibitory and promoting) on ER-mediated gene transcription, while GR modulates the transcription of pro-proliferation genes in ER-positive breast cancer cells. In addition, we have presented four enhancer reprogramming mechanisms (transcription factor cooperation, pioneer factor binding, dynamic assisted loading, and tethering) and the multiple enhancer-promoter contact models. Based on these mechanisms and models, this review proposes that the combination of multiple therapy strategies such as agonists/antagonists of SHRs plus endocrine therapy and the adoption of the latest sequencing technologies are expected to improve the efficacy of ER positive breast cancer treatment.

类固醇激素受体(SHRs)对转录重编程的调控对乳腺癌的进展至关重要。包括雌激素受体(ER)、雄激素受体(AR)、孕酮受体(PR)和糖皮质激素受体(GR)在内的类固醇激素受体在重塑乳腺癌细胞转录组方面发挥着关键作用。然而,SHRs调控增强子区域染色质景观和转录因子相互作用的分子机制在很大程度上仍然未知。在这篇综述中,我们总结了 3 种 SHR(AR、PR 和 GR)通过染色质相互作用和增强子重编程对基因转录的调控作用。具体来说,AR和PR对ER介导的基因转录具有双向调控作用(既有抑制作用,也有促进作用),而GR则能调节ER阳性乳腺癌细胞中促增殖基因的转录。此外,我们还介绍了四种增强子重编程机制(转录因子合作、先锋因子结合、动态辅助加载和系链)以及增强子-启动子多重接触模型。基于这些机制和模型,本综述提出了多种治疗策略的组合,如SHRs的激动剂/拮抗剂加内分泌治疗,以及采用最新的测序技术,有望提高ER阳性乳腺癌的治疗效果。
{"title":"Regulatory mechanisms of steroid hormone receptors on gene transcription through chromatin interaction and enhancer reprogramming.","authors":"Ge Sun, Chunguang Zhao, Jing Han, Shaoya Wu, Yan Chen, Jing Yao, Li Li","doi":"10.1007/s13402-024-01011-y","DOIUrl":"https://doi.org/10.1007/s13402-024-01011-y","url":null,"abstract":"<p><p>Regulation of steroid hormone receptors (SHRs) on transcriptional reprogramming is crucial for breast cancer progression. SHRs, including estrogen receptor (ER), androgen receptor (AR), progesterone receptor (PR), and glucocorticoid receptor (GR) play key roles in remodeling the transcriptome of breast cancer cells. However, the molecular mechanisms by which SHRs regulate chromatin landscape in enhancer regions and transcription factor interactions remain largely unknown. In this review, we summarized the regulatory effects of 3 types of SHRs (AR, PR, and GR) on gene transcription through chromatin interactions and enhancer reprogramming. Specifically, AR and PR exhibit bi-directional regulatory effects (both inhibitory and promoting) on ER-mediated gene transcription, while GR modulates the transcription of pro-proliferation genes in ER-positive breast cancer cells. In addition, we have presented four enhancer reprogramming mechanisms (transcription factor cooperation, pioneer factor binding, dynamic assisted loading, and tethering) and the multiple enhancer-promoter contact models. Based on these mechanisms and models, this review proposes that the combination of multiple therapy strategies such as agonists/antagonists of SHRs plus endocrine therapy and the adoption of the latest sequencing technologies are expected to improve the efficacy of ER positive breast cancer treatment.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell death in glioblastoma and the central nervous system. 胶质母细胞瘤和中枢神经系统中的细胞死亡。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2024-11-06 DOI: 10.1007/s13402-024-01007-8
Kyle Malone, Eric LaCasse, Shawn T Beug

Glioblastoma is the commonest and deadliest primary brain tumor. Glioblastoma is characterized by significant intra- and inter-tumoral heterogeneity, resistance to treatment and dismal prognoses despite decades of research in understanding its biological underpinnings. Encompassed within this heterogeneity and therapy resistance are severely dysregulated programmed cell death pathways. Glioblastomas recapitulate many neurodevelopmental and neural injury responses; in addition, glioblastoma cells are composed of multiple different transformed versions of CNS cell types. To obtain a greater understanding of the features underlying cell death regulation in glioblastoma, it is important to understand the control of cell death within the healthy CNS during homeostatic and neurodegenerative conditions. Herein, we review apoptotic control within neural stem cells, astrocytes, oligodendrocytes and neurons and compare them to glioblastoma apoptotic control. Specific focus is paid to the Inhibitor of Apoptosis proteins, which play key roles in neuroinflammation, CNS cell survival and gliomagenesis. This review will help in understanding glioblastoma as a transformed version of a heterogeneous organ composed of multiple varied cell types performing different functions and possessing different means of apoptotic control. Further, this review will help in developing more glioblastoma-specific treatment approaches and will better inform treatments looking at more direct brain delivery of therapeutic agents.

胶质母细胞瘤是最常见、最致命的原发性脑肿瘤。胶质母细胞瘤具有瘤内和瘤间显著的异质性、耐药性和预后不良的特点,尽管数十年来人们一直在研究其生物学基础。这种异质性和耐药性中包含着严重失调的程序性细胞死亡通路。胶质母细胞瘤重现了许多神经发育和神经损伤反应;此外,胶质母细胞瘤细胞由多种不同的中枢神经系统细胞类型转化而成。为了更深入地了解胶质母细胞瘤细胞死亡调控的基本特征,了解健康中枢神经系统在平衡和神经退行性病变条件下的细胞死亡调控非常重要。在此,我们回顾了神经干细胞、星形胶质细胞、少突胶质细胞和神经元的凋亡调控,并将它们与胶质母细胞瘤的凋亡调控进行了比较。我们特别关注了在神经炎症、中枢神经系统细胞存活和胶质瘤发生中发挥关键作用的凋亡抑制蛋白。这篇综述将有助于理解胶质母细胞瘤是由多种不同类型的细胞组成的异质器官的转化版本,这些细胞具有不同的功能和不同的凋亡控制手段。此外,这篇综述还有助于开发更多针对胶质母细胞瘤的治疗方法,并为更直接地向大脑输送治疗药物的治疗方法提供更好的参考。
{"title":"Cell death in glioblastoma and the central nervous system.","authors":"Kyle Malone, Eric LaCasse, Shawn T Beug","doi":"10.1007/s13402-024-01007-8","DOIUrl":"https://doi.org/10.1007/s13402-024-01007-8","url":null,"abstract":"<p><p>Glioblastoma is the commonest and deadliest primary brain tumor. Glioblastoma is characterized by significant intra- and inter-tumoral heterogeneity, resistance to treatment and dismal prognoses despite decades of research in understanding its biological underpinnings. Encompassed within this heterogeneity and therapy resistance are severely dysregulated programmed cell death pathways. Glioblastomas recapitulate many neurodevelopmental and neural injury responses; in addition, glioblastoma cells are composed of multiple different transformed versions of CNS cell types. To obtain a greater understanding of the features underlying cell death regulation in glioblastoma, it is important to understand the control of cell death within the healthy CNS during homeostatic and neurodegenerative conditions. Herein, we review apoptotic control within neural stem cells, astrocytes, oligodendrocytes and neurons and compare them to glioblastoma apoptotic control. Specific focus is paid to the Inhibitor of Apoptosis proteins, which play key roles in neuroinflammation, CNS cell survival and gliomagenesis. This review will help in understanding glioblastoma as a transformed version of a heterogeneous organ composed of multiple varied cell types performing different functions and possessing different means of apoptotic control. Further, this review will help in developing more glioblastoma-specific treatment approaches and will better inform treatments looking at more direct brain delivery of therapeutic agents.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SUMOylation regulates the aggressiveness of breast cancer-associated fibroblasts. SUMOylation 调节乳腺癌相关成纤维细胞的侵袭性。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2024-10-21 DOI: 10.1007/s13402-024-01005-w
Angelica Martínez-López, Guiomar Infante, Marina Mendiburu-Eliçabe, Andrés Machuca, Olga M Antón, Mónica González-Fernández, José L Luque-García, Robert B Clarke, Sonia Castillo-Lluva
<p><strong>Background: </strong>Cancer-associated fibroblasts (CAFs) are the most abundant stromal cellular component in the tumor microenvironment (TME). CAFs contribute to tumorigenesis and have been proposed as targets for anticancer therapies. Similarly, dysregulation of SUMO machinery components can disrupt the balance of SUMOylation, contributing to tumorigenesis and drug resistance in various cancers, including breast cancer. We explored the role of SUMOylation in breast CAFs and evaluated its potential as a therapeutic strategy in breast cancer.</p><p><strong>Methods: </strong>We used pharmacological and genetic approaches to analyse the functional crosstalk between breast tumor cells and CAFs. We treated breast CAFs with the SUMO1 inhibitor ginkgolic acid (GA) at two different concentrations and conditioned media was used to analyse the proliferation, migration, and invasion of breast cancer cells from different molecular subtypes. Additionally, we performed quantitative proteomics (SILAC) to study the differential signalling pathways expressed in CAFs treated with low or high concentrations of GA. We confirmed these results both in vitro and in vivo. Moreover, we used samples from metastatic breast cancer patients to evaluate the use of GA as a therapeutic strategy.</p><p><strong>Results: </strong>Inhibition of SUMOylation with ginkgolic acid (GA) induces death in breast cancer cells but does not affect the viability of CAFs, indicating that CAFs are resistant to this therapy. While CAF viability is unaffected, CAF-conditioned media (CM) is altered by GA, impacting tumor cell behaviour in different ways depending on the overall degree to which SUMO1-SUMOylated proteins are dysregulated. Breast cancer cell lines exhibited a concentration-dependent response to conditioned media (CM) from CAFs. At a low concentration of GA (10 µM), there was an increase in proliferation, migration and invasion of breast cancer cells. However, at a higher concentration of GA (30 µM), these processes were inhibited. Similarly, analysis of tumor development revealed that at 10 µM of GA, the tumors were heavier and there was a greater degree of metastasis compared to the tumors treated with the higher concentration of GA (30 µM). Moreover, some of these effects could be explained by an alteration in the activity of the GTPase Rac1 and the activation of the AKT signalling pathway. The results obtained using SILAC suggest that different concentrations of GA affected cellular processes differentially, possibly influencing the secretome of CAFs. Treatment of metastatic breast cancer with GA demonstrated the use of SUMOylation inhibition as an alternative therapeutic strategy.</p><p><strong>Conclusion: </strong>The study highlights the importance of SUMOylation in the tumor microenvironment, specifically in cancer-associated fibroblasts (CAFs). Targeting SUMOylation in CAFs affects their signalling pathways and secretome in a concentration-dependent manner, regulat
背景:癌症相关成纤维细胞(CAFs)是肿瘤微环境(TME)中最丰富的基质细胞成分。CAFs 有助于肿瘤发生,并被认为是抗癌疗法的靶点。同样,SUMO机制成分的失调会破坏SUMO酰化的平衡,导致包括乳腺癌在内的多种癌症的肿瘤发生和耐药性。我们探讨了 SUMOylation 在乳腺癌 CAFs 中的作用,并评估了其作为乳腺癌治疗策略的潜力:方法:我们采用药理学和遗传学方法分析了乳腺肿瘤细胞和CAFs之间的功能性串扰。我们用两种不同浓度的SUMO1抑制剂银杏酸(GA)处理乳腺CAFs,并用条件培养基分析不同分子亚型乳腺癌细胞的增殖、迁移和侵袭。此外,我们还进行了定量蛋白质组学(SILAC)研究,以了解经低浓度或高浓度 GA 处理的 CAF 所表达的不同信号通路。我们在体外和体内都证实了这些结果。此外,我们还利用转移性乳腺癌患者的样本来评估将 GA 用作治疗策略的效果:结果:用银杏酸(GA)抑制SUMO酰化可诱导乳腺癌细胞死亡,但不会影响CAFs的活力,这表明CAFs对这种疗法有抵抗力。虽然CAF的活力不受影响,但GA会改变CAF的条件培养基(CM),并根据SUMO1-SUMOylated蛋白失调的总体程度以不同的方式影响肿瘤细胞的行为。乳腺癌细胞系对来自CAFs的条件培养基(CM)表现出浓度依赖性反应。在低浓度 GA(10 µM)条件下,乳腺癌细胞的增殖、迁移和侵袭均有所增加。然而,在较高浓度的 GA(30 µM)下,这些过程受到抑制。同样,对肿瘤发展的分析表明,与使用较高浓度 GA(30 µM)处理的肿瘤相比,使用 10 µM GA 处理的肿瘤更重,转移程度更高。此外,其中一些影响可以通过改变 GTPase Rac1 的活性和激活 AKT 信号通路来解释。使用 SILAC 获得的结果表明,不同浓度的 GA 对细胞过程的影响不同,可能会影响 CAFs 的分泌组。用GA治疗转移性乳腺癌表明,SUMO酰化抑制可作为一种替代治疗策略:该研究强调了 SUMOylation 在肿瘤微环境中的重要性,特别是在癌症相关成纤维细胞(CAFs)中的重要性。靶向 CAFs 中的 SUMOylation 会以浓度依赖的方式影响其信号通路和分泌组,从而调节 CAFs 的原发肿瘤特性。
{"title":"SUMOylation regulates the aggressiveness of breast cancer-associated fibroblasts.","authors":"Angelica Martínez-López, Guiomar Infante, Marina Mendiburu-Eliçabe, Andrés Machuca, Olga M Antón, Mónica González-Fernández, José L Luque-García, Robert B Clarke, Sonia Castillo-Lluva","doi":"10.1007/s13402-024-01005-w","DOIUrl":"https://doi.org/10.1007/s13402-024-01005-w","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Background: &lt;/strong&gt;Cancer-associated fibroblasts (CAFs) are the most abundant stromal cellular component in the tumor microenvironment (TME). CAFs contribute to tumorigenesis and have been proposed as targets for anticancer therapies. Similarly, dysregulation of SUMO machinery components can disrupt the balance of SUMOylation, contributing to tumorigenesis and drug resistance in various cancers, including breast cancer. We explored the role of SUMOylation in breast CAFs and evaluated its potential as a therapeutic strategy in breast cancer.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;We used pharmacological and genetic approaches to analyse the functional crosstalk between breast tumor cells and CAFs. We treated breast CAFs with the SUMO1 inhibitor ginkgolic acid (GA) at two different concentrations and conditioned media was used to analyse the proliferation, migration, and invasion of breast cancer cells from different molecular subtypes. Additionally, we performed quantitative proteomics (SILAC) to study the differential signalling pathways expressed in CAFs treated with low or high concentrations of GA. We confirmed these results both in vitro and in vivo. Moreover, we used samples from metastatic breast cancer patients to evaluate the use of GA as a therapeutic strategy.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;Inhibition of SUMOylation with ginkgolic acid (GA) induces death in breast cancer cells but does not affect the viability of CAFs, indicating that CAFs are resistant to this therapy. While CAF viability is unaffected, CAF-conditioned media (CM) is altered by GA, impacting tumor cell behaviour in different ways depending on the overall degree to which SUMO1-SUMOylated proteins are dysregulated. Breast cancer cell lines exhibited a concentration-dependent response to conditioned media (CM) from CAFs. At a low concentration of GA (10 µM), there was an increase in proliferation, migration and invasion of breast cancer cells. However, at a higher concentration of GA (30 µM), these processes were inhibited. Similarly, analysis of tumor development revealed that at 10 µM of GA, the tumors were heavier and there was a greater degree of metastasis compared to the tumors treated with the higher concentration of GA (30 µM). Moreover, some of these effects could be explained by an alteration in the activity of the GTPase Rac1 and the activation of the AKT signalling pathway. The results obtained using SILAC suggest that different concentrations of GA affected cellular processes differentially, possibly influencing the secretome of CAFs. Treatment of metastatic breast cancer with GA demonstrated the use of SUMOylation inhibition as an alternative therapeutic strategy.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusion: &lt;/strong&gt;The study highlights the importance of SUMOylation in the tumor microenvironment, specifically in cancer-associated fibroblasts (CAFs). Targeting SUMOylation in CAFs affects their signalling pathways and secretome in a concentration-dependent manner, regulat","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
USP28 promotes tumor progression and glycolysis by stabilizing PKM2/Hif1-α in cholangiocarcinoma. USP28 通过稳定胆管癌中的 PKM2/Hif1-α 促进肿瘤进展和糖酵解。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2024-10-17 DOI: 10.1007/s13402-024-01002-z
Qian Qiao, Jifei Wang, Shuochen Liu, Jiang Chang, Tao Zhou, Changxian Li, Yaodong Zhang, Wangjie Jiang, Yananlan Chen, Xiao Xu, Mingyu Wu, Xiangcheng Li

Background: Ubiquitination is one of the important modification of proteins which can be reversed by deubiquitinating enzymes (DUBs). Ubiquitin specific protease 28 (USP28) belongs to the deubiquitinase family, which plays a cancer-promoting function in many types of cancers such as pancreatic cancer and breast cancer. So far, the molecular function and significance of USP 28 in cholangiocarcinoma remain unclear.

Methods: In this study, we evaluated the expression of USP28 using tissue microarray (TMA), reverse transcription polymerase chain reaction (qRT-PCR), and online databases. We investigated the effect of USP28 on the progression of CCA through in vitro and in vivo functional experiments. In addition, we explored downstream molecular pathways using Western blotting (WB), immunofluorescence (IF), and mass spectrometry techniques.

Results: Here, we found that cholangiocarcinoma tissue had higher USP 28 expression than normal bile duct tissue, and that high USP 28 levels were significantly associated with a malignant phenotype and poorer prognosis in cholangiocarcinoma patients. Both in vitro and in vivo, USP28 could mediate the deubiquitination of PKM2, thereby activating the downstream Hif1-α signaling pathway, promoting glycolysis and energy supply, and finally promoting tumor progression.

Conclusion: In summary, USP28 activated downstream Hif1-α by reducing the ubiquitination level of PKM2, furthermore, promoting the level of glycolysis in CCA cells for tumor progression.

背景:泛素化是蛋白质的重要修饰之一,可通过去泛素化酶(DUBs)逆转。泛素特异性蛋白酶28(USP28)属于去泛素化酶家族,在胰腺癌、乳腺癌等多种癌症中发挥促癌作用。迄今为止,USP 28 在胆管癌中的分子功能和意义仍不清楚:在本研究中,我们使用组织芯片(TMA)、逆转录聚合酶链反应(qRT-PCR)和在线数据库评估了 USP28 的表达。我们通过体外和体内功能实验研究了 USP28 对 CCA 进展的影响。此外,我们还利用 Western 印迹(WB)、免疫荧光(IF)和质谱技术探索了下游分子通路:结果:我们发现胆管癌组织的 USP 28 表达高于正常胆管组织,而且高 USP 28 水平与胆管癌患者的恶性表型和较差的预后显著相关。在体外和体内,USP28都能介导PKM2的去泛素化,从而激活下游Hif1-α信号通路,促进糖酵解和能量供应,最终促进肿瘤进展:综上所述,USP28通过降低PKM2的泛素化水平激活了下游的Hif1-α,进一步促进了CCA细胞的糖酵解水平,从而促进了肿瘤的进展。
{"title":"USP28 promotes tumor progression and glycolysis by stabilizing PKM2/Hif1-α in cholangiocarcinoma.","authors":"Qian Qiao, Jifei Wang, Shuochen Liu, Jiang Chang, Tao Zhou, Changxian Li, Yaodong Zhang, Wangjie Jiang, Yananlan Chen, Xiao Xu, Mingyu Wu, Xiangcheng Li","doi":"10.1007/s13402-024-01002-z","DOIUrl":"https://doi.org/10.1007/s13402-024-01002-z","url":null,"abstract":"<p><strong>Background: </strong>Ubiquitination is one of the important modification of proteins which can be reversed by deubiquitinating enzymes (DUBs). Ubiquitin specific protease 28 (USP28) belongs to the deubiquitinase family, which plays a cancer-promoting function in many types of cancers such as pancreatic cancer and breast cancer. So far, the molecular function and significance of USP 28 in cholangiocarcinoma remain unclear.</p><p><strong>Methods: </strong>In this study, we evaluated the expression of USP28 using tissue microarray (TMA), reverse transcription polymerase chain reaction (qRT-PCR), and online databases. We investigated the effect of USP28 on the progression of CCA through in vitro and in vivo functional experiments. In addition, we explored downstream molecular pathways using Western blotting (WB), immunofluorescence (IF), and mass spectrometry techniques.</p><p><strong>Results: </strong>Here, we found that cholangiocarcinoma tissue had higher USP 28 expression than normal bile duct tissue, and that high USP 28 levels were significantly associated with a malignant phenotype and poorer prognosis in cholangiocarcinoma patients. Both in vitro and in vivo, USP28 could mediate the deubiquitination of PKM2, thereby activating the downstream Hif1-α signaling pathway, promoting glycolysis and energy supply, and finally promoting tumor progression.</p><p><strong>Conclusion: </strong>In summary, USP28 activated downstream Hif1-α by reducing the ubiquitination level of PKM2, furthermore, promoting the level of glycolysis in CCA cells for tumor progression.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Note: The autocrine glycosylated-GREM1 interacts with TGFB1 to suppress TGFβ/BMP/SMAD-mediated EMT partially by inhibiting MYL9 transactivation in urinary carcinoma. 撤稿说明:自分泌糖基化-GREM1与TGFB1相互作用,通过抑制泌尿系统癌中MYL9的转录,部分抑制TGFβ/BMP/SMAD介导的EMT。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2024-10-17 DOI: 10.1007/s13402-024-01006-9
Ti-Chun Chan, Cheng-Tang Pan, Hsin-Yu Hsieh, Pichpisith Pierre Vejvisithsakul, Ren-Jie Wei, Bi-Wen Yeh, Wen-Jeng Wu, Lih-Ren Chen, Meng-Shin Shiao, Chien-Feng Li, Yow-Ling Shiue
{"title":"Retraction Note: The autocrine glycosylated-GREM1 interacts with TGFB1 to suppress TGFβ/BMP/SMAD-mediated EMT partially by inhibiting MYL9 transactivation in urinary carcinoma.","authors":"Ti-Chun Chan, Cheng-Tang Pan, Hsin-Yu Hsieh, Pichpisith Pierre Vejvisithsakul, Ren-Jie Wei, Bi-Wen Yeh, Wen-Jeng Wu, Lih-Ren Chen, Meng-Shin Shiao, Chien-Feng Li, Yow-Ling Shiue","doi":"10.1007/s13402-024-01006-9","DOIUrl":"https://doi.org/10.1007/s13402-024-01006-9","url":null,"abstract":"","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The long non-coding RNA NEAT1 contributes to aberrant STAT3 signaling in pancreatic cancer and is regulated by a metalloprotease-disintegrin ADAM8/miR-181a-5p axis. 长非编码 RNA NEAT1 在胰腺癌中导致 STAT3 信号异常,并受金属蛋白酶-二整合蛋白 ADAM8/miR-181a-5p 轴的调控。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2024-10-16 DOI: 10.1007/s13402-024-01001-0
Yutong Gao, Kimia Zandieh, Kai Zhao, Natalia Khizanishvili, Pietro Di Fazio, Xiangdi Yu, Leon Schulte, Michelle Aillaud, Ho-Ryun Chung, Zachary Ball, Marion Meixner, Uta-Maria Bauer, Detlef Klaus Bartsch, Malte Buchholz, Matthias Lauth, Christopher Nimsky, Lena Cook, Jörg W Bartsch

Purpose: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and several studies demonstrate that STAT3 has critical roles throughout the course of PDAC pathogenesis.

Methods: TCGA, microarray, and immunohistochemistry data from a PDAC cohort were used for clinical analyses. Panc89 cells with ADAM8 knockout, re-expression of ADAM8 mutants, and Panc1 cells overexpressing ADAM8 were generated. Gene expression analyses of ADAM8, STAT3, long non-coding (lnc) RNA NEAT1, miR-181a-5p and ICAM1 were performed by quantitative PCR. Subcellular fractionation quantified NEAT1 expression in cytoplasm and nucleus of PDAC cell lines. Cell proliferation, scratch, and invasion assays were performed to detect growth rate, migration and invasion capabilities of cells. Gain and loss of function experiments were carried out to investigate the biological effects of lncRNA NEAT1 and miR-181a-5p on PDAC cells and downstream genes. Dual-luciferase reporter gene assay determined interaction and binding sites of miR-181a-5p in lncRNA NEAT1. Pull down assays, RNA binding protein immunoprecipitation (RIP), and ubiquitination assays explored the molecular interaction between lncRNA NEAT1 and STAT3.

Results: High ADAM8 expression causes aberrant STAT3 signaling in PDAC cells and is positively correlated with NEAT1 expression. NEAT1 binding to STAT3 was confirmed and prevents STAT3 degradation in the proteasome as increased degradation of STAT3 was observed in ADAM8 knockout cells and cells treated with bortezomib. Furthermore, miRNA-181a-5p regulates NEAT1 expression by direct binding to the NEAT1 promoter.

Conclusion: ADAM8 regulates intracellular STAT3 levels via miR-181a-5p and NEAT1 in pancreatic cancer.

目的:胰腺导管腺癌(PDAC)是致死率最高的癌症之一,多项研究表明 STAT3 在整个 PDAC 发病过程中起着关键作用:方法: 使用来自 PDAC 队列的 TCGA、芯片和免疫组化数据进行临床分析。生成了 ADAM8 基因敲除的 Panc89 细胞、ADAM8 突变体的再表达细胞和过表达 ADAM8 的 Panc1 细胞。通过定量 PCR 对 ADAM8、STAT3、长非编码(lnc)RNA NEAT1、miR-181a-5p 和 ICAM1 进行了基因表达分析。亚细胞分馏定量检测了 NEAT1 在 PDAC 细胞系细胞质和细胞核中的表达。通过细胞增殖、划痕和侵袭实验检测细胞的生长速度、迁移和侵袭能力。为了研究 lncRNA NEAT1 和 miR-181a-5p 对 PDAC 细胞及下游基因的生物学效应,进行了功能增益和丧失实验。双荧光素酶报告基因实验确定了 miR-181a-5p 与 lncRNA NEAT1 的相互作用和结合位点。牵引试验、RNA结合蛋白免疫沉淀(RIP)和泛素化试验探讨了lncRNA NEAT1与STAT3之间的分子相互作用:结果:ADAM8的高表达会导致PDAC细胞中STAT3信号的异常,并与NEAT1的表达呈正相关。ADAM8基因敲除细胞和硼替佐米处理的细胞中STAT3的降解增加,因此NEAT1与STAT3的结合得到证实,并能防止STAT3在蛋白酶体中降解。此外,miRNA-181a-5p通过与NEAT1启动子直接结合来调节NEAT1的表达:结论:ADAM8通过miRNA-181a-5p和NEAT1调节胰腺癌细胞内STAT3的水平。
{"title":"The long non-coding RNA NEAT1 contributes to aberrant STAT3 signaling in pancreatic cancer and is regulated by a metalloprotease-disintegrin ADAM8/miR-181a-5p axis.","authors":"Yutong Gao, Kimia Zandieh, Kai Zhao, Natalia Khizanishvili, Pietro Di Fazio, Xiangdi Yu, Leon Schulte, Michelle Aillaud, Ho-Ryun Chung, Zachary Ball, Marion Meixner, Uta-Maria Bauer, Detlef Klaus Bartsch, Malte Buchholz, Matthias Lauth, Christopher Nimsky, Lena Cook, Jörg W Bartsch","doi":"10.1007/s13402-024-01001-0","DOIUrl":"https://doi.org/10.1007/s13402-024-01001-0","url":null,"abstract":"<p><strong>Purpose: </strong>Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and several studies demonstrate that STAT3 has critical roles throughout the course of PDAC pathogenesis.</p><p><strong>Methods: </strong>TCGA, microarray, and immunohistochemistry data from a PDAC cohort were used for clinical analyses. Panc89 cells with ADAM8 knockout, re-expression of ADAM8 mutants, and Panc1 cells overexpressing ADAM8 were generated. Gene expression analyses of ADAM8, STAT3, long non-coding (lnc) RNA NEAT1, miR-181a-5p and ICAM1 were performed by quantitative PCR. Subcellular fractionation quantified NEAT1 expression in cytoplasm and nucleus of PDAC cell lines. Cell proliferation, scratch, and invasion assays were performed to detect growth rate, migration and invasion capabilities of cells. Gain and loss of function experiments were carried out to investigate the biological effects of lncRNA NEAT1 and miR-181a-5p on PDAC cells and downstream genes. Dual-luciferase reporter gene assay determined interaction and binding sites of miR-181a-5p in lncRNA NEAT1. Pull down assays, RNA binding protein immunoprecipitation (RIP), and ubiquitination assays explored the molecular interaction between lncRNA NEAT1 and STAT3.</p><p><strong>Results: </strong>High ADAM8 expression causes aberrant STAT3 signaling in PDAC cells and is positively correlated with NEAT1 expression. NEAT1 binding to STAT3 was confirmed and prevents STAT3 degradation in the proteasome as increased degradation of STAT3 was observed in ADAM8 knockout cells and cells treated with bortezomib. Furthermore, miRNA-181a-5p regulates NEAT1 expression by direct binding to the NEAT1 promoter.</p><p><strong>Conclusion: </strong>ADAM8 regulates intracellular STAT3 levels via miR-181a-5p and NEAT1 in pancreatic cancer.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BCAT1 contributes to the development of TKI-resistant CML. BCAT1 是 TKI 抗性 CML 的形成原因之一。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2024-10-16 DOI: 10.1007/s13402-024-01003-y
Yu Jiang, Difan Zhang, Xiaoxiao He, Chiqi Chen, Li Xie, Ligen Liu, Zhuo Yu, Yaping Zhang, Junke Zheng, Dan Huang

Purpose: Although most of chronic myeloid leukemia (CML) patients can be effectively treated by the tyrosine kinase inhibitors (TKIs), such as Imatinib, TKI-resistance still occurs in approximately 15-17% of cases. Although many studies indicate that branched chain amino acid (BCAA) metabolism may contribute to the TKI resistance in CML, the detailed mechanisms remains largely unknown.

Method: The cell proliferation, colony formation and in vivo transplantation were used to determined the functions of BCAT1 in leukemogenesis. Quantitative real-time PCR (RT-PCR), western blotting, RNA sequencing, BCAA stimulation in vitro were applied to characterize the underlying molecular mechanism that control the leukemogenic activity of BCAT1-knockdown cells.

Results: In this report, we revealed that branched chain amino acid transaminase 1 (BCAT1) is highly enriched in both mouse and human TKI-resistant CML cells. Leukemia was almost completely abrogated upon BCAT1 knockdown during transplantation in a BCR-ABLT315I-induced murine TKI-resistant CML model. Moreover, knockdown of BCAT1 led to a dramatic decrease in the proliferation of TKI-resistant human leukemia cell lines. BCAA/BCAT1 signaling enhanced the phosphorylation of CREB, which is required for maintenance of TKI-resistant CML cells. Importantly, blockade of BCAA/BCAT1 signaling efficiently inhibited leukemogenesis both in vivo and in vitro.

Conclusions: These findings demonstrate the role of BCAA/BCAT1 signaling in cancer development and suggest that targeting BCAA/BCAT1 signaling is a potential strategy for interfering with TKI-resistant CML.

目的:尽管大多数慢性髓性白血病(CML)患者可通过伊马替尼等酪氨酸激酶抑制剂(TKIs)得到有效治疗,但仍有约15%-17%的病例出现TKI耐药。尽管许多研究表明,支链氨基酸(BCAA)代谢可能是导致 CML 耐 TKI 的原因之一,但其具体机制仍不清楚:方法:通过细胞增殖、集落形成和体内移植来确定BCAT1在白血病发生中的功能。应用定量实时 PCR(RT-PCR)、Western 印迹、RNA 测序、BCAA 体外刺激等方法,研究控制 BCAT1 敲除细胞致白血病活性的分子机制:本报告揭示了支链氨基酸转氨酶1(BCAT1)在小鼠和人类TKI耐药CML细胞中的高度富集。在BCR-ABLT315I诱导的小鼠TKI耐药CML模型中,移植过程中敲除BCAT1后,白血病几乎完全消失。此外,敲除 BCAT1 还能显著减少耐 TKI 人类白血病细胞系的增殖。BCAA/BCAT1信号增强了CREB的磷酸化,而CREB是维持TKI耐药CML细胞所必需的。重要的是,阻断BCAA/BCAT1信号传导可有效抑制体内和体外的白血病发生:这些研究结果证明了BCAA/BCAT1信号传导在癌症发展中的作用,并表明针对BCAA/BCAT1信号传导是干扰TKI耐药CML的一种潜在策略。
{"title":"BCAT1 contributes to the development of TKI-resistant CML.","authors":"Yu Jiang, Difan Zhang, Xiaoxiao He, Chiqi Chen, Li Xie, Ligen Liu, Zhuo Yu, Yaping Zhang, Junke Zheng, Dan Huang","doi":"10.1007/s13402-024-01003-y","DOIUrl":"https://doi.org/10.1007/s13402-024-01003-y","url":null,"abstract":"<p><strong>Purpose: </strong>Although most of chronic myeloid leukemia (CML) patients can be effectively treated by the tyrosine kinase inhibitors (TKIs), such as Imatinib, TKI-resistance still occurs in approximately 15-17% of cases. Although many studies indicate that branched chain amino acid (BCAA) metabolism may contribute to the TKI resistance in CML, the detailed mechanisms remains largely unknown.</p><p><strong>Method: </strong>The cell proliferation, colony formation and in vivo transplantation were used to determined the functions of BCAT1 in leukemogenesis. Quantitative real-time PCR (RT-PCR), western blotting, RNA sequencing, BCAA stimulation in vitro were applied to characterize the underlying molecular mechanism that control the leukemogenic activity of BCAT1-knockdown cells.</p><p><strong>Results: </strong>In this report, we revealed that branched chain amino acid transaminase 1 (BCAT1) is highly enriched in both mouse and human TKI-resistant CML cells. Leukemia was almost completely abrogated upon BCAT1 knockdown during transplantation in a BCR-ABL<sup>T315I</sup>-induced murine TKI-resistant CML model. Moreover, knockdown of BCAT1 led to a dramatic decrease in the proliferation of TKI-resistant human leukemia cell lines. BCAA/BCAT1 signaling enhanced the phosphorylation of CREB, which is required for maintenance of TKI-resistant CML cells. Importantly, blockade of BCAA/BCAT1 signaling efficiently inhibited leukemogenesis both in vivo and in vitro.</p><p><strong>Conclusions: </strong>These findings demonstrate the role of BCAA/BCAT1 signaling in cancer development and suggest that targeting BCAA/BCAT1 signaling is a potential strategy for interfering with TKI-resistant CML.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating bulk and single-cell transcriptomics to elucidate the role and potential mechanisms of autophagy in aging tissue. 整合体细胞和单细胞转录组学,阐明自噬在衰老组织中的作用和潜在机制。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2024-10-16 DOI: 10.1007/s13402-024-00996-w
Zhenhua Zhu, Linsen Li, Youqiong Ye, Qing Zhong

Purpose: Autophagy is frequently observed in tissues during the aging process, yet the tissues most strongly correlated with autophagy during aging and the underlying regulatory mechanisms remain inadequately understood. The purpose of this study is to identify the tissues with the highest correlation between autophagy and aging, and to explore the functions and mechanisms of autophagy in the aging tissue microenvironment.

Methods: Integrated bulk RNA-seq from over 7000 normal tissue samples, single-cell sequencing data from blood samples of different ages, more than 2000 acute myeloid leukemia (AML) bulk RNA-seq, and multiple sets of AML single-cell data. The datasets were analysed using various bioinformatic approaches.

Results: Blood tissue exhibited the highest positive correlation between autophagy and aging among healthy tissues. Single-cell resolution analysis revealed that in aged blood, classical monocytes (C. monocytes) are most closely associated with elevated autophagy levels. Increased autophagy in these monocytes correlated with a higher proportion of C. monocytes, with hypoxia identified as a crucial contributing factor. In AML, a representative myeloid blood disease, enhanced autophagy was accompanied by an increased proportionof C. monocytes. High autophagy levels in monocytes are associated with pro-inflammatory gene upregulation and Reactive Oxygen Species (ROS) accumulation, contributing to tissue aging.

Conclusion: This study revealed that autophagy is most strongly correlated with aging in blood tissue. Enhanced autophagy levels in C. monocytes demonstrate a positive correlation with increased secretion of pro-inflammatory factors and elevated production of ROS, which may contribute to a more rapid aging process. This discovery underscores the critical role of autophagy in blood aging and suggests potential therapeutic targets to mitigate aging-related health issues.

目的:自噬在衰老过程中经常在组织中被观察到,然而衰老过程中与自噬相关性最强的组织及其潜在的调控机制仍未被充分了解。本研究旨在确定自噬与衰老相关性最高的组织,并探索自噬在衰老组织微环境中的功能和机制:整合了7000多份正常组织样本的大量RNA-seq数据、不同年龄段血液样本的单细胞测序数据、2000多份急性髓性白血病(AML)的大量RNA-seq数据以及多组AML单细胞数据。这些数据集采用了各种生物信息学方法进行分析:结果:在健康组织中,血液组织显示出自噬与衰老之间最高的正相关性。单细胞分辨率分析显示,在衰老的血液中,经典单核细胞(C. monocytes)与自噬水平升高的关系最为密切。这些单核细胞自噬水平的升高与 C. 单核细胞比例的升高有关,而缺氧被认为是一个重要的促成因素。在具有代表性的骨髓性血液疾病急性髓性白血病中,自噬的增强伴随着C. 单核细胞比例的增加。单核细胞的高自噬水平与促炎基因上调和活性氧(ROS)积累有关,从而导致组织老化:这项研究表明,自噬与血液组织的衰老关系最为密切。C.单核细胞自噬水平的提高与促炎因子分泌的增加和 ROS 生成的增加呈正相关,这可能会导致更快的衰老过程。这一发现强调了自噬在血液衰老中的关键作用,并提出了缓解衰老相关健康问题的潜在治疗目标。
{"title":"Integrating bulk and single-cell transcriptomics to elucidate the role and potential mechanisms of autophagy in aging tissue.","authors":"Zhenhua Zhu, Linsen Li, Youqiong Ye, Qing Zhong","doi":"10.1007/s13402-024-00996-w","DOIUrl":"https://doi.org/10.1007/s13402-024-00996-w","url":null,"abstract":"<p><strong>Purpose: </strong>Autophagy is frequently observed in tissues during the aging process, yet the tissues most strongly correlated with autophagy during aging and the underlying regulatory mechanisms remain inadequately understood. The purpose of this study is to identify the tissues with the highest correlation between autophagy and aging, and to explore the functions and mechanisms of autophagy in the aging tissue microenvironment.</p><p><strong>Methods: </strong>Integrated bulk RNA-seq from over 7000 normal tissue samples, single-cell sequencing data from blood samples of different ages, more than 2000 acute myeloid leukemia (AML) bulk RNA-seq, and multiple sets of AML single-cell data. The datasets were analysed using various bioinformatic approaches.</p><p><strong>Results: </strong>Blood tissue exhibited the highest positive correlation between autophagy and aging among healthy tissues. Single-cell resolution analysis revealed that in aged blood, classical monocytes (C. monocytes) are most closely associated with elevated autophagy levels. Increased autophagy in these monocytes correlated with a higher proportion of C. monocytes, with hypoxia identified as a crucial contributing factor. In AML, a representative myeloid blood disease, enhanced autophagy was accompanied by an increased proportionof C. monocytes. High autophagy levels in monocytes are associated with pro-inflammatory gene upregulation and Reactive Oxygen Species (ROS) accumulation, contributing to tissue aging.</p><p><strong>Conclusion: </strong>This study revealed that autophagy is most strongly correlated with aging in blood tissue. Enhanced autophagy levels in C. monocytes demonstrate a positive correlation with increased secretion of pro-inflammatory factors and elevated production of ROS, which may contribute to a more rapid aging process. This discovery underscores the critical role of autophagy in blood aging and suggests potential therapeutic targets to mitigate aging-related health issues.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ALKBH4 functions as a hypoxia-responsive tumor suppressor and inhibits metastasis and tumorigenesis. ALKBH4 是一种低氧反应性肿瘤抑制因子,可抑制转移和肿瘤发生。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2024-10-14 DOI: 10.1007/s13402-024-01004-x
Ji-Lin Chen, Pei-Hua Peng, Han-Tsang Wu, Dar-Ren Chen, Ching-Yun Hsieh, Jeng-Shou Chang, Joseph Lin, Huan-Yu Lin, Kai-Wen Hsu

Purpose: The human AlkB homolog (ALKBH) dioxygenase superfamily plays a crucial role in gene regulation and is implicated in cancer progression. Under hypoxic conditions, hypoxia-inducible factors (HIFs) dynamically regulate methylation by controlling various dioxygenases, thereby modulating gene expression. However, the role of hypoxia-responsive AlkB dioxygenase remains unclear.

Methods: The molecular events were examined using real-time PCR and Western blot analysis. Tumor cell aggressiveness was evaluated through migration, invasion, MTT, trypan blue exclusion, and colony formation assays. In vivo metastatic models and xenograft experiments were conducted to evaluate tumor progression.

Results: Here, we examined the expression of the ALKBH superfamily under hypoxic conditions and found that ALKBH4 expression was negatively regulated by hypoxia. Knockdown of ALKBH4 enhanced the epithelial-mesenchymal transition (EMT), cell migration, invasion, and growth in vitro. The silencing of ALKBH4 enhanced metastatic ability and tumor growth in vivo. Conversely, overexpression of ALLKBH4 reversed these observations. Furthermore, overexpression of ALKBH4 significantly reversed hypoxia/HIF-1α-induced EMT, cell migration, invasion, tumor metastasis, and tumorigenicity. Notably, high expression of ALKBH4 was associated with better outcomes in head and neck cancer and breast cancer patients. Enrichment analysis also revealed that ALKBH4 was negatively enriched in hypoxia-related pathways. Clinically, a negative correlation between ALKBH4 and HIF-1α protein expression has been observed in tissues from both head and neck cancers and breast cancers.

Conclusion: These findings collectively suggest that ALKBH4 acts as a tumor suppressor and holds therapeutic potential for hypoxic tumors.

目的:人类 AlkB 同源物(ALKBH)二加氧酶超家族在基因调控中起着至关重要的作用,并与癌症进展有关。在缺氧条件下,缺氧诱导因子(HIFs)通过控制各种二氧酶动态调节甲基化,从而调控基因表达。然而,缺氧反应性 AlkB 二氧酶的作用仍不清楚:方法:使用实时 PCR 和 Western 印迹分析对分子事件进行检测。通过迁移、侵袭、MTT、胰蓝排除和集落形成试验评估肿瘤细胞的侵袭性。体内转移模型和异种移植实验用于评估肿瘤进展:结果:我们研究了缺氧条件下ALKBH超家族的表达,发现ALKBH4的表达受缺氧负调控。敲除 ALKBH4 可增强上皮-间质转化(EMT)、细胞迁移、侵袭和体外生长。沉默 ALKBH4 会增强转移能力和体内肿瘤生长。相反,过表达 ALLKBH4 则会逆转这些观察结果。此外,过表达 ALKBH4 能显著逆转缺氧/HIF-1α 诱导的 EMT、细胞迁移、侵袭、肿瘤转移和致瘤性。值得注意的是,ALKBH4的高表达与头颈癌和乳腺癌患者更好的预后有关。富集分析还显示,ALKBH4 在缺氧相关通路中负富集。临床上,在头颈癌和乳腺癌组织中观察到ALKBH4与HIF-1α蛋白表达呈负相关:这些发现共同表明,ALKBH4 是一种肿瘤抑制因子,具有治疗缺氧性肿瘤的潜力。
{"title":"ALKBH4 functions as a hypoxia-responsive tumor suppressor and inhibits metastasis and tumorigenesis.","authors":"Ji-Lin Chen, Pei-Hua Peng, Han-Tsang Wu, Dar-Ren Chen, Ching-Yun Hsieh, Jeng-Shou Chang, Joseph Lin, Huan-Yu Lin, Kai-Wen Hsu","doi":"10.1007/s13402-024-01004-x","DOIUrl":"https://doi.org/10.1007/s13402-024-01004-x","url":null,"abstract":"<p><strong>Purpose: </strong>The human AlkB homolog (ALKBH) dioxygenase superfamily plays a crucial role in gene regulation and is implicated in cancer progression. Under hypoxic conditions, hypoxia-inducible factors (HIFs) dynamically regulate methylation by controlling various dioxygenases, thereby modulating gene expression. However, the role of hypoxia-responsive AlkB dioxygenase remains unclear.</p><p><strong>Methods: </strong>The molecular events were examined using real-time PCR and Western blot analysis. Tumor cell aggressiveness was evaluated through migration, invasion, MTT, trypan blue exclusion, and colony formation assays. In vivo metastatic models and xenograft experiments were conducted to evaluate tumor progression.</p><p><strong>Results: </strong>Here, we examined the expression of the ALKBH superfamily under hypoxic conditions and found that ALKBH4 expression was negatively regulated by hypoxia. Knockdown of ALKBH4 enhanced the epithelial-mesenchymal transition (EMT), cell migration, invasion, and growth in vitro. The silencing of ALKBH4 enhanced metastatic ability and tumor growth in vivo. Conversely, overexpression of ALLKBH4 reversed these observations. Furthermore, overexpression of ALKBH4 significantly reversed hypoxia/HIF-1α-induced EMT, cell migration, invasion, tumor metastasis, and tumorigenicity. Notably, high expression of ALKBH4 was associated with better outcomes in head and neck cancer and breast cancer patients. Enrichment analysis also revealed that ALKBH4 was negatively enriched in hypoxia-related pathways. Clinically, a negative correlation between ALKBH4 and HIF-1α protein expression has been observed in tissues from both head and neck cancers and breast cancers.</p><p><strong>Conclusion: </strong>These findings collectively suggest that ALKBH4 acts as a tumor suppressor and holds therapeutic potential for hypoxic tumors.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting the Notch-Furin axis with 2-hydroxyoleic acid: a key mechanism in glioblastoma therapy. 用 2-hydroxyoleic acid 靶向 Notch-Furin 轴:胶质母细胞瘤治疗的关键机制。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2024-10-14 DOI: 10.1007/s13402-024-00995-x
Raquel Rodríguez-Lorca, Ramón Román, Roberto Beteta-Göbel, Manuel Torres, Victoria Lladó, Pablo V Escribá, Paula Fernández-García

Purpose: Glioblastomas (GBMs) are highly treatment-resistant and aggressive brain tumors. 2OHOA, which is currently running a phase IIB/III clinical trial for newly diagnosed GBM patients, was developed in the context of melitherapy. This therapy focuses on the regulation of the membrane's structure and organization with the consequent modulation of certain cell signals to revert the pathological state in several disorders. Notch signaling has been associated with tumorigenesis and cell survival, potentially driving the pathogenesis of GBM. The current study aims to determine whether 2OHOA modulates the Notch pathway as part of its antitumoral mechanism.

Methods: 2OHOA's effect was evaluated on different components of the pathway by Western blot, Q-PCR, and confocal microscopy. Notch receptor processing was analyzed by subcellular fractionation and colocalization studies. Furin activity was evaluated under cleavage of its substrate by fluorescence assays and its binding affinity to 2OHOA was determined by surface plasmon resonance.

Results: We found that 2OHOA inhibits Notch2 and Notch3 signaling by dual mechanism. Notch2 inhibition is unleashed by impairment of its processing through the inactivation of furin activity by physical association. Instead, Notch3 is transcriptionally downregulated leading to a lower activation of the pathway. Moreover, we also found that HES1 overexpression highlighted the relevance of this pathway in the 2OHOA pharmacological efficacy.

Conclusion: These findings report that the inhibition of Notch signaling by 2OHOA plays a role in its anti-tumoral activity, an effect that may be driven through direct inhibition of furin, characterizing a novel target of this bioactive lipid to treat GBM.

目的:胶质母细胞瘤(GBM)是一种高度耐药的侵袭性脑肿瘤。2OHOA 目前正在进行 IIB/III 期临床试验,用于治疗新确诊的 GBM 患者。这种疗法的重点是调节膜的结构和组织,从而调节某些细胞信号,以恢复多种疾病的病理状态。Notch信号与肿瘤发生和细胞存活有关,可能是GBM发病机制的驱动因素。本研究旨在确定 2OHOA 是否调节 Notch 通路,作为其抗肿瘤机制的一部分。通过亚细胞分馏和共聚焦研究分析了Notch受体的处理过程。通过荧光测定评估了Furin在其底物裂解过程中的活性,并通过表面等离子共振测定了其与2OHOA的结合亲和力:结果:我们发现2OHOA通过双重机制抑制Notch2和Notch3信号传导。Notch2的抑制作用是通过物理结合使呋喃活性失活,从而影响其处理过程。相反,Notch3 的转录下调导致该通路的激活降低。此外,我们还发现 HES1 的过表达突出了该通路在 2OHOA 药效中的相关性:这些研究结果表明,2OHOA 对 Notch 信号转导的抑制在其抗肿瘤活性中发挥了作用,这种作用可能是通过直接抑制呋喃来实现的。
{"title":"Targeting the Notch-Furin axis with 2-hydroxyoleic acid: a key mechanism in glioblastoma therapy.","authors":"Raquel Rodríguez-Lorca, Ramón Román, Roberto Beteta-Göbel, Manuel Torres, Victoria Lladó, Pablo V Escribá, Paula Fernández-García","doi":"10.1007/s13402-024-00995-x","DOIUrl":"https://doi.org/10.1007/s13402-024-00995-x","url":null,"abstract":"<p><strong>Purpose: </strong>Glioblastomas (GBMs) are highly treatment-resistant and aggressive brain tumors. 2OHOA, which is currently running a phase IIB/III clinical trial for newly diagnosed GBM patients, was developed in the context of melitherapy. This therapy focuses on the regulation of the membrane's structure and organization with the consequent modulation of certain cell signals to revert the pathological state in several disorders. Notch signaling has been associated with tumorigenesis and cell survival, potentially driving the pathogenesis of GBM. The current study aims to determine whether 2OHOA modulates the Notch pathway as part of its antitumoral mechanism.</p><p><strong>Methods: </strong>2OHOA's effect was evaluated on different components of the pathway by Western blot, Q-PCR, and confocal microscopy. Notch receptor processing was analyzed by subcellular fractionation and colocalization studies. Furin activity was evaluated under cleavage of its substrate by fluorescence assays and its binding affinity to 2OHOA was determined by surface plasmon resonance.</p><p><strong>Results: </strong>We found that 2OHOA inhibits Notch2 and Notch3 signaling by dual mechanism. Notch2 inhibition is unleashed by impairment of its processing through the inactivation of furin activity by physical association. Instead, Notch3 is transcriptionally downregulated leading to a lower activation of the pathway. Moreover, we also found that HES1 overexpression highlighted the relevance of this pathway in the 2OHOA pharmacological efficacy.</p><p><strong>Conclusion: </strong>These findings report that the inhibition of Notch signaling by 2OHOA plays a role in its anti-tumoral activity, an effect that may be driven through direct inhibition of furin, characterizing a novel target of this bioactive lipid to treat GBM.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cellular Oncology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1