Isotonic design for single-arm biomarker stratified trials

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES Statistical Methods in Medical Research Pub Date : 2024-04-04 DOI:10.1177/09622802241238978
Lang Li, Anastasia Ivanova
{"title":"Isotonic design for single-arm biomarker stratified trials","authors":"Lang Li, Anastasia Ivanova","doi":"10.1177/09622802241238978","DOIUrl":null,"url":null,"abstract":"In single-arm trials with a predefined subgroup based on baseline biomarkers, it is often assumed that a biomarker defined subgroup, the biomarker positive subgroup, has the same or higher response to treatment compared to its complement, the biomarker negative subgroup. The goal is to determine if the treatment is effective in each of the subgroups or in the biomarker positive subgroup only or not effective at all. We propose the isotonic stratified design for this problem. The design has a joint set of decision rules for biomarker positive and negative subjects and utilizes joint estimation of response probabilities using assumed monotonicity of response between the biomarker negative and positive subgroups. The new design reduces the sample size requirement when compared to running two Simon's designs in each biomarker positive and negative. For example, the new design requires 23%–35% fewer patients than running two Simon's designs for scenarios we considered. Alternatively, the new design allows evaluating the response probability in both biomarker negative and biomarker positive subgroups using only 40% more patients needed for running Simon's design in the biomarker positive subgroup only.","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":"52 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241238978","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

In single-arm trials with a predefined subgroup based on baseline biomarkers, it is often assumed that a biomarker defined subgroup, the biomarker positive subgroup, has the same or higher response to treatment compared to its complement, the biomarker negative subgroup. The goal is to determine if the treatment is effective in each of the subgroups or in the biomarker positive subgroup only or not effective at all. We propose the isotonic stratified design for this problem. The design has a joint set of decision rules for biomarker positive and negative subjects and utilizes joint estimation of response probabilities using assumed monotonicity of response between the biomarker negative and positive subgroups. The new design reduces the sample size requirement when compared to running two Simon's designs in each biomarker positive and negative. For example, the new design requires 23%–35% fewer patients than running two Simon's designs for scenarios we considered. Alternatively, the new design allows evaluating the response probability in both biomarker negative and biomarker positive subgroups using only 40% more patients needed for running Simon's design in the biomarker positive subgroup only.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单臂生物标记分层试验的等张设计
在根据基线生物标志物预先确定亚组的单臂试验中,通常假定生物标志物确定的亚组(即生物标志物阳性亚组)与其补充亚组(即生物标志物阴性亚组)相比,对治疗的反应相同或更高。我们的目标是确定治疗是对每个亚组有效,还是只对生物标志物阳性亚组有效,或者根本无效。针对这一问题,我们提出了等渗分层设计。该设计为生物标志物阳性和阴性受试者提供了一套联合决策规则,并利用生物标志物阴性和阳性亚组之间假定的反应单调性联合估计反应概率。与在每个生物标记物阳性和阴性子组中运行两个西蒙设计相比,新设计减少了对样本量的要求。例如,在我们考虑的情况下,新设计比运行两个西蒙设计所需的患者数量减少 23%-35%。另外,与只在生物标记物阳性亚组进行西蒙设计相比,新设计只需要多 40% 的患者就能评估生物标记物阴性和阳性亚组的反应概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
期刊最新文献
LASSO-type instrumental variable selection methods with an application to Mendelian randomization. Estimating an adjusted risk difference in a cluster randomized trial with individual-level analyses. Testing for a treatment effect in a selected subgroup. Enhancing DHA supplementation adherence: A Bayesian approach with finite mixture models and irregular interim schedules in adaptive trial designs. Analysis of recurrent event data with spatial random effects using a Bayesian approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1