Kiran Saleem, Lei Wang, Salil Bharany, Khmaies Ouahada, Ateeq Ur Rehman, Habib Hamam
{"title":"Intelligent multi-agent model for energy-efficient communication in wireless sensor networks","authors":"Kiran Saleem, Lei Wang, Salil Bharany, Khmaies Ouahada, Ateeq Ur Rehman, Habib Hamam","doi":"10.1186/s13635-024-00155-6","DOIUrl":null,"url":null,"abstract":"The research addresses energy consumption, latency, and network reliability challenges in wireless sensor network communication, especially in military security applications. A multi-agent context-aware model employing the belief-desire-intention (BDI) reasoning mechanism is proposed. This model utilizes a semantic knowledge-based intelligent reasoning network to monitor suspicious activities within a prohibited zone, generating alerts. Additionally, a BDI intelligent multi-level data transmission routing algorithm is proposed to optimize energy consumption constraints and enhance energy-awareness among nodes. The energy optimization analysis involves the Energy Percent Dataset, showcasing the efficiency of four wireless sensor network techniques (E-FEERP, GTEB, HHO-UCRA, EEIMWSN) in maintaining high energy levels. E-FEERP consistently exhibits superior energy efficiency (93 to 98%), emphasizing its effectiveness. The Energy Consumption Dataset provides insights into the joule measurements of energy consumption for each technique, highlighting their diverse energy efficiency characteristics. Latency measurements are presented for four techniques within a fixed transmission range of 5000 m. E-FEERP demonstrates latency ranging from 3.0 to 4.0 s, while multi-hop latency values range from 2.7 to 2.9 s. These values provide valuable insights into the performance characteristics of each technique under specified conditions. The Packet Delivery Ratio (PDR) dataset reveals the consistent performance of the techniques in maintaining successful packet delivery within the specified transmission range. E-FEERP achieves PDR values between 89.5 and 92.3%, demonstrating its reliability. The Packet Received Data further illustrates the efficiency of each technique in receiving transmitted packets. Moreover the network lifetime results show E-FEERP consistently improving from 2550 s to round 925. GTEB and HHO-UCRA exhibit fluctuations around 3100 and 3600 s, indicating variable performance. In contrast, EEIMWSN consistently improves from round 1250 to 4500 s.","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":"37 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13635-024-00155-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The research addresses energy consumption, latency, and network reliability challenges in wireless sensor network communication, especially in military security applications. A multi-agent context-aware model employing the belief-desire-intention (BDI) reasoning mechanism is proposed. This model utilizes a semantic knowledge-based intelligent reasoning network to monitor suspicious activities within a prohibited zone, generating alerts. Additionally, a BDI intelligent multi-level data transmission routing algorithm is proposed to optimize energy consumption constraints and enhance energy-awareness among nodes. The energy optimization analysis involves the Energy Percent Dataset, showcasing the efficiency of four wireless sensor network techniques (E-FEERP, GTEB, HHO-UCRA, EEIMWSN) in maintaining high energy levels. E-FEERP consistently exhibits superior energy efficiency (93 to 98%), emphasizing its effectiveness. The Energy Consumption Dataset provides insights into the joule measurements of energy consumption for each technique, highlighting their diverse energy efficiency characteristics. Latency measurements are presented for four techniques within a fixed transmission range of 5000 m. E-FEERP demonstrates latency ranging from 3.0 to 4.0 s, while multi-hop latency values range from 2.7 to 2.9 s. These values provide valuable insights into the performance characteristics of each technique under specified conditions. The Packet Delivery Ratio (PDR) dataset reveals the consistent performance of the techniques in maintaining successful packet delivery within the specified transmission range. E-FEERP achieves PDR values between 89.5 and 92.3%, demonstrating its reliability. The Packet Received Data further illustrates the efficiency of each technique in receiving transmitted packets. Moreover the network lifetime results show E-FEERP consistently improving from 2550 s to round 925. GTEB and HHO-UCRA exhibit fluctuations around 3100 and 3600 s, indicating variable performance. In contrast, EEIMWSN consistently improves from round 1250 to 4500 s.
期刊介绍:
The overall goal of the EURASIP Journal on Information Security, sponsored by the European Association for Signal Processing (EURASIP), is to bring together researchers and practitioners dealing with the general field of information security, with a particular emphasis on the use of signal processing tools in adversarial environments. As such, it addresses all works whereby security is achieved through a combination of techniques from cryptography, computer security, machine learning and multimedia signal processing. Application domains lie, for example, in secure storage, retrieval and tracking of multimedia data, secure outsourcing of computations, forgery detection of multimedia data, or secure use of biometrics. The journal also welcomes survey papers that give the reader a gentle introduction to one of the topics covered as well as papers that report large-scale experimental evaluations of existing techniques. Pure cryptographic papers are outside the scope of the journal. Topics relevant to the journal include, but are not limited to: • Multimedia security primitives (such digital watermarking, perceptual hashing, multimedia authentictaion) • Steganography and Steganalysis • Fingerprinting and traitor tracing • Joint signal processing and encryption, signal processing in the encrypted domain, applied cryptography • Biometrics (fusion, multimodal biometrics, protocols, security issues) • Digital forensics • Multimedia signal processing approaches tailored towards adversarial environments • Machine learning in adversarial environments • Digital Rights Management • Network security (such as physical layer security, intrusion detection) • Hardware security, Physical Unclonable Functions • Privacy-Enhancing Technologies for multimedia data • Private data analysis, security in outsourced computations, cloud privacy