Jiayu Wang, Yuan Xie, Kai Chen, Hongbin Wu, Justin M. Hodgkiss, Xiaowei Zhan
{"title":"Physical insights into non-fullerene organic photovoltaics","authors":"Jiayu Wang, Yuan Xie, Kai Chen, Hongbin Wu, Justin M. Hodgkiss, Xiaowei Zhan","doi":"10.1038/s42254-024-00719-y","DOIUrl":null,"url":null,"abstract":"Boosted by the fast development of non-fullerene acceptors, organic photovoltaics (OPVs) have achieved breakthrough power conversion efficiencies — in excess of 20% and approaching those of state-of-the-art crystalline silicon photovoltaics. New physical properties, unusual phenomena and critical mechanisms have been uncovered in non-fullerene acceptors and related devices, all contributing to deliver advances in OPV technologies. In this Review, we summarize the photophysics and device physics of non-fullerene-acceptor-based OPVs, with emphasis on the comparison between fullerene and non-fullerene acceptors of the physical processes that affect device performance. We discuss the processes of exciton generation, diffusion, transport and separation and charge recombination in OPVs and present recent interpretations of the physics of non-fullerene-acceptor-based OPVs, looking at how driving energy affects exciton separation and how charge recombination affects voltage loss. Compiling these mechanisms — especially those that can overcome the intrinsic limitations imposed by the energy-gap law — we provide a strategy for minimizing voltage loss and discuss future research directions and challenges in the fundamentals and performance of OPVs, including new modes of operation for non-fullerene-acceptor-based OPVs. Non-fullerene acceptors have boosted the development of organic photovoltaics. This Review highlights the photophysics and device physics of non-fullerene organic photovoltaics, including exciton generation, diffusion, transport, separation and charge recombination.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 6","pages":"365-381"},"PeriodicalIF":44.8000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-024-00719-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Boosted by the fast development of non-fullerene acceptors, organic photovoltaics (OPVs) have achieved breakthrough power conversion efficiencies — in excess of 20% and approaching those of state-of-the-art crystalline silicon photovoltaics. New physical properties, unusual phenomena and critical mechanisms have been uncovered in non-fullerene acceptors and related devices, all contributing to deliver advances in OPV technologies. In this Review, we summarize the photophysics and device physics of non-fullerene-acceptor-based OPVs, with emphasis on the comparison between fullerene and non-fullerene acceptors of the physical processes that affect device performance. We discuss the processes of exciton generation, diffusion, transport and separation and charge recombination in OPVs and present recent interpretations of the physics of non-fullerene-acceptor-based OPVs, looking at how driving energy affects exciton separation and how charge recombination affects voltage loss. Compiling these mechanisms — especially those that can overcome the intrinsic limitations imposed by the energy-gap law — we provide a strategy for minimizing voltage loss and discuss future research directions and challenges in the fundamentals and performance of OPVs, including new modes of operation for non-fullerene-acceptor-based OPVs. Non-fullerene acceptors have boosted the development of organic photovoltaics. This Review highlights the photophysics and device physics of non-fullerene organic photovoltaics, including exciton generation, diffusion, transport, separation and charge recombination.
期刊介绍:
Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.