{"title":"Cretaceous integrative stratigraphy, biotas, and paleogeographical evolution of the Qinghai-Tibetan Plateau and its surrounding areas","authors":"","doi":"10.1007/s11430-023-1303-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The Cretaceous Period is a vital time interval in deciphering the evolutionary history of the Neo-Tethys Ocean and the convergence of different plates and blocks across the Qinghai-Tibetan Plateau. A detailed stratigraphic framework and paleogeographic patterns are the basis for understanding the evolution of the Neo-Tethys Ocean and the formation of the Qinghai-Tibetan Plateau. Here, the Cretaceous stratigraphy, biota, paleogeography, and major geological events in the Qinghai-Tibetan Plateau are analyzed to establish an integrative stratigraphic framework, reconstruct the paleogeography during the Cretaceous Period, and decode the history of the major geological events. The Cretaceous rocks of the Qinghai-Tibetan Plateau and its surrounding area are predominantly marine deposits, with a small amount of interbedded marine-terrestrial and terrestrial conponents. The Indus-Yarlung Tsangpo Suture Zone was responsible for the deposition of deep marine sediments dominated by ophiolite suites and radiolarian silicalite. To the south, the Tethys Himalayas and Indus Basin received marine sediments of varying depths and lithology; to the north, the Xigaze and Ladakh forearc basins are also filled with marine sediments. The Lhasa Block, Karakorum Block, western Tarim Basin, and West Burma block consist of shallow marine, interbedded marine-terrestrial, and terrestrial sediments. The Qiangtang Basin and other areas are dominated by terrestrial sedimentation. The Cretaceous strata of the Qinghai-Tibetan Plateau and its surrounding areas are widely distributed and diversified, with abundant foraminifera, calcareous nannofossils, radiolarians, ammonites, bivalves, and palynomorphs. On the basis of integrated lithostratigraphic, biostratigraphic, geochronologic, and chemostratigraphic analyses, we proposed herein a comprehensive stratigraphic framework for the Cretaceous Period of the eastern Neo-Tethys. By analyzing the Cretaceous biota of different biogeographic zones from eastern Neo-Tethys and its surrounding areas, we reconstructed the paleobiogeography of different periods of eastern Neo-Tethys. The Cretaceous paleogeographic evolution of the Qinghai-Tibetan Plateau and its surrounding areas can be divided into three phases: (1) gradual breakup of the Indian Plate from the Australia-Antarctica continent and the early collision phase of the Lhasa-Qiangtang blocks (145–125 Ma); (2) northward drift of the Indian Plate and the collision phase of the Lhasa-Qiangtang blocks (125–100 Ma); (3) rapid northward drift of the Indian Plate, formation of the Tarim-Tajik-Karakorum Bay, and early uplift of the Gangdise Mountains (100–66 Ma). The Indus-Tethys Himalayan biota underwent a transition from the cold-water type in the high latitudes of the southern hemisphere to the warm-water type near the equator from the Early Cretaceous to the Mid-Cretaceous. The biodiversity and abundance of the eastern Neo-Tethys Ocean increased gradually in the Early Cretaceous, peaking in the Mid-Cretaceous, and decreased sharply during the late Late Cretaceous (late Maastrichtian). Along with the northward drift of the Indian Plate and subduction of the Neo-Tethys, the eastern Neo-Tethys and its surrounding areas experienced a series of major geological events, including the formation of the large igneous province, oceanic anoxia events, and mass extinction, etc.</p>","PeriodicalId":21651,"journal":{"name":"Science China Earth Sciences","volume":"12 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11430-023-1303-2","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Cretaceous Period is a vital time interval in deciphering the evolutionary history of the Neo-Tethys Ocean and the convergence of different plates and blocks across the Qinghai-Tibetan Plateau. A detailed stratigraphic framework and paleogeographic patterns are the basis for understanding the evolution of the Neo-Tethys Ocean and the formation of the Qinghai-Tibetan Plateau. Here, the Cretaceous stratigraphy, biota, paleogeography, and major geological events in the Qinghai-Tibetan Plateau are analyzed to establish an integrative stratigraphic framework, reconstruct the paleogeography during the Cretaceous Period, and decode the history of the major geological events. The Cretaceous rocks of the Qinghai-Tibetan Plateau and its surrounding area are predominantly marine deposits, with a small amount of interbedded marine-terrestrial and terrestrial conponents. The Indus-Yarlung Tsangpo Suture Zone was responsible for the deposition of deep marine sediments dominated by ophiolite suites and radiolarian silicalite. To the south, the Tethys Himalayas and Indus Basin received marine sediments of varying depths and lithology; to the north, the Xigaze and Ladakh forearc basins are also filled with marine sediments. The Lhasa Block, Karakorum Block, western Tarim Basin, and West Burma block consist of shallow marine, interbedded marine-terrestrial, and terrestrial sediments. The Qiangtang Basin and other areas are dominated by terrestrial sedimentation. The Cretaceous strata of the Qinghai-Tibetan Plateau and its surrounding areas are widely distributed and diversified, with abundant foraminifera, calcareous nannofossils, radiolarians, ammonites, bivalves, and palynomorphs. On the basis of integrated lithostratigraphic, biostratigraphic, geochronologic, and chemostratigraphic analyses, we proposed herein a comprehensive stratigraphic framework for the Cretaceous Period of the eastern Neo-Tethys. By analyzing the Cretaceous biota of different biogeographic zones from eastern Neo-Tethys and its surrounding areas, we reconstructed the paleobiogeography of different periods of eastern Neo-Tethys. The Cretaceous paleogeographic evolution of the Qinghai-Tibetan Plateau and its surrounding areas can be divided into three phases: (1) gradual breakup of the Indian Plate from the Australia-Antarctica continent and the early collision phase of the Lhasa-Qiangtang blocks (145–125 Ma); (2) northward drift of the Indian Plate and the collision phase of the Lhasa-Qiangtang blocks (125–100 Ma); (3) rapid northward drift of the Indian Plate, formation of the Tarim-Tajik-Karakorum Bay, and early uplift of the Gangdise Mountains (100–66 Ma). The Indus-Tethys Himalayan biota underwent a transition from the cold-water type in the high latitudes of the southern hemisphere to the warm-water type near the equator from the Early Cretaceous to the Mid-Cretaceous. The biodiversity and abundance of the eastern Neo-Tethys Ocean increased gradually in the Early Cretaceous, peaking in the Mid-Cretaceous, and decreased sharply during the late Late Cretaceous (late Maastrichtian). Along with the northward drift of the Indian Plate and subduction of the Neo-Tethys, the eastern Neo-Tethys and its surrounding areas experienced a series of major geological events, including the formation of the large igneous province, oceanic anoxia events, and mass extinction, etc.
期刊介绍:
Science China Earth Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.