Effect of Buffer Charge Redistribution on RF Losses and Harmonic Distortion in GaN-on-Si Substrates

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-04-08 DOI:10.1109/JEDS.2024.3386170
Pieter Cardinael;Sachin Yadav;Bertrand Parvais;Jean-Pierre Raskin
{"title":"Effect of Buffer Charge Redistribution on RF Losses and Harmonic Distortion in GaN-on-Si Substrates","authors":"Pieter Cardinael;Sachin Yadav;Bertrand Parvais;Jean-Pierre Raskin","doi":"10.1109/JEDS.2024.3386170","DOIUrl":null,"url":null,"abstract":"Understanding and mitigation of substrate RF losses and signal distortion are critical to enable high-performance GaN-on-Si front-end-modules. While the origin of RF losses and consequently a decreased effective substrate resistivity \n<inline-formula> <tex-math>$({\\rho }_{eff})$ </tex-math></inline-formula>\n in GaN-on-Si substrates is now understood to be diffusion of Al and Ga atoms into the silicon substrate during III-N growth, the effect of upper III-N buffer layers on the \n<inline-formula> <tex-math>${\\rho }_{eff}$ </tex-math></inline-formula>\n degradation under stressed conditions remains unclear. In this paper, we show that up to 50% variation in \n<inline-formula> <tex-math>${\\rho }_{eff}$ </tex-math></inline-formula>\n at 2 GHz can take place over more than 1,000 s when the substrate is stressed at 50 V. Additionally, Coplanar Wave Guide (CPW) large-signal measurements under the same experimental conditions show a variation of \n<inline-formula> <tex-math>$2^{\\mathrm{ nd}}$ </tex-math></inline-formula>\n harmonic power of up to 5dB. A thermally activated stress and relaxation behavior shows the signature of traps which are present in the C-doped layers. With the help of a simplified TCAD model of the GaN-on-Si stack, we link this behavior to slow charge redistribution in the C-doped buffer continuously modifying the flat-band voltage (\n<inline-formula> <tex-math>$\\text{V}_{\\text {FB}}$ </tex-math></inline-formula>\n) of the Metal-Insulator-Semiconductor (MIS) structure. Free carrier transport across the buffer is shown to have the greatest contribution on the large time constants, highlighting the importance of vertical transport paths in GaN-on-Si stacks.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10495002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10495002/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding and mitigation of substrate RF losses and signal distortion are critical to enable high-performance GaN-on-Si front-end-modules. While the origin of RF losses and consequently a decreased effective substrate resistivity $({\rho }_{eff})$ in GaN-on-Si substrates is now understood to be diffusion of Al and Ga atoms into the silicon substrate during III-N growth, the effect of upper III-N buffer layers on the ${\rho }_{eff}$ degradation under stressed conditions remains unclear. In this paper, we show that up to 50% variation in ${\rho }_{eff}$ at 2 GHz can take place over more than 1,000 s when the substrate is stressed at 50 V. Additionally, Coplanar Wave Guide (CPW) large-signal measurements under the same experimental conditions show a variation of $2^{\mathrm{ nd}}$ harmonic power of up to 5dB. A thermally activated stress and relaxation behavior shows the signature of traps which are present in the C-doped layers. With the help of a simplified TCAD model of the GaN-on-Si stack, we link this behavior to slow charge redistribution in the C-doped buffer continuously modifying the flat-band voltage ( $\text{V}_{\text {FB}}$ ) of the Metal-Insulator-Semiconductor (MIS) structure. Free carrier transport across the buffer is shown to have the greatest contribution on the large time constants, highlighting the importance of vertical transport paths in GaN-on-Si stacks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缓冲电荷再分布对硅基氮化镓衬底射频损耗和谐波失真的影响
要实现高性能硅基氮化镓前端模块,了解并减少基底射频损耗和信号失真至关重要。虽然硅基氮化镓衬底的射频损耗以及由此导致的有效衬底电阻率$({\rho }_{eff})$下降的原因现在已被理解为在III-N生长过程中铝和镓原子向硅衬底的扩散,但上层III-N缓冲层对受压条件下${\rho }_{eff}$退化的影响仍不清楚。本文表明,当衬底在 50 V 下受压时,2 GHz 频率下的 ${\rho }_{eff}$ 在 1,000 秒内会发生高达 50%的变化。此外,在相同实验条件下进行的共面波导 (CPW) 大信号测量显示,2^{\mathrm{nd}}$谐波功率的变化高达 5dB。热激活应力和弛豫行为显示了掺杂 C 的层中存在陷阱的特征。借助简化的硅基氮化镓(GaN-on-Si)堆栈 TCAD 模型,我们将这种行为与掺杂 C 的缓冲器中缓慢的电荷再分布联系起来,这种再分布会持续改变金属-绝缘体-半导体(MIS)结构的平带电压($\{V}_{text {FB}}$)。跨缓冲器的自由载流子传输对大时间常数的贡献最大,这突出了硅基氮化镓叠层中垂直传输路径的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1