Phi Hung Dao, Hoang Nghia Trinh, Thuy Chinh Nguyen, Anh Hiep Nguyen, Dinh Hieu Vu, Xuan Thai Nguyen, Thi Huong Giang Hoang, Tien Dung Nguyen, Hoang Thai
{"title":"Enhanced photocatalytic and antibacterial properties of silver–zirconia nanoparticles for environmental pollution treatment","authors":"Phi Hung Dao, Hoang Nghia Trinh, Thuy Chinh Nguyen, Anh Hiep Nguyen, Dinh Hieu Vu, Xuan Thai Nguyen, Thi Huong Giang Hoang, Tien Dung Nguyen, Hoang Thai","doi":"10.1515/pac-2024-0108","DOIUrl":null,"url":null,"abstract":"Silver–zirconia nanoparticles (Ag–ZrO<jats:sub>2</jats:sub> NPs) were synthesized via an in situ strategy at room temperature using NaBH<jats:sub>4</jats:sub> as a reducing agent. The surface modification of ZrO<jats:sub>2</jats:sub> nanoparticles with nano silver was confirmed through various characterization techniques including Fourier Transform Infrared Spectroscopy (FTIR), UV–vis Diffuse Reflectance Spectroscopy (UV–vis DRS), X-ray Diffraction (XRD), and Field Emission Scanning Electron Microscopy (FESEM). The obtained results demonstrated that Ag nanoparticles, with a crystallite size of approximately 12 nm, were uniformly distributed on the surface of ZrO<jats:sub>2</jats:sub> nanoparticles. The incorporation of Ag nanoparticles to the ZrO<jats:sub>2</jats:sub> nanoparticles led to increasing the light absorption ability and reducing the band gap of Ag–ZrO<jats:sub>2</jats:sub> nanoparticles, thereby enhancing their photocatalytic performance under infrared lamp exposure. When 1 g/L of Ag–ZrO<jats:sub>2</jats:sub> nanoparticles was employed to methylene blue (MB) solution, the degradation of MB reached 90 % after 5 h of exposure. Additionally, the Ag–ZrO<jats:sub>2</jats:sub> nanoparticles exhibited a high antibacterial activity against two bacterial strains, <jats:italic>E. coli</jats:italic> and <jats:italic>S. aureus</jats:italic>. These findings highlight the potential of Ag–ZrO<jats:sub>2</jats:sub> nanoparticles as effective materials for environmental pollution treatment through advanced oxidation processes.","PeriodicalId":20911,"journal":{"name":"Pure and Applied Chemistry","volume":"140 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/pac-2024-0108","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Silver–zirconia nanoparticles (Ag–ZrO2 NPs) were synthesized via an in situ strategy at room temperature using NaBH4 as a reducing agent. The surface modification of ZrO2 nanoparticles with nano silver was confirmed through various characterization techniques including Fourier Transform Infrared Spectroscopy (FTIR), UV–vis Diffuse Reflectance Spectroscopy (UV–vis DRS), X-ray Diffraction (XRD), and Field Emission Scanning Electron Microscopy (FESEM). The obtained results demonstrated that Ag nanoparticles, with a crystallite size of approximately 12 nm, were uniformly distributed on the surface of ZrO2 nanoparticles. The incorporation of Ag nanoparticles to the ZrO2 nanoparticles led to increasing the light absorption ability and reducing the band gap of Ag–ZrO2 nanoparticles, thereby enhancing their photocatalytic performance under infrared lamp exposure. When 1 g/L of Ag–ZrO2 nanoparticles was employed to methylene blue (MB) solution, the degradation of MB reached 90 % after 5 h of exposure. Additionally, the Ag–ZrO2 nanoparticles exhibited a high antibacterial activity against two bacterial strains, E. coli and S. aureus. These findings highlight the potential of Ag–ZrO2 nanoparticles as effective materials for environmental pollution treatment through advanced oxidation processes.
期刊介绍:
Pure and Applied Chemistry is the official monthly Journal of IUPAC, with responsibility for publishing works arising from those international scientific events and projects that are sponsored and undertaken by the Union. The policy is to publish highly topical and credible works at the forefront of all aspects of pure and applied chemistry, and the attendant goal is to promote widespread acceptance of the Journal as an authoritative and indispensable holding in academic and institutional libraries.