{"title":"Decentralized distributed parameter tuning model to generate unidirectional movements","authors":"Takumi Horita, Kei-Ichi Ueda","doi":"10.1007/s13160-024-00653-7","DOIUrl":null,"url":null,"abstract":"<p>This study proposes a module designed for the automatic parameter control of peristaltic locomotion systems. The module comprises two populations of oscillators, each responsible for controlling the phase of periodic elongation–contraction motion and the friction force exerted by the ground, respectively. The parameter control algorithm operates independently in each module, with parameters updated through a selection algorithm applied to the elements in each module. Peristaltic locomotion systems, equipped with the proposed modules in the body segments, exhibit autonomous parameter controls, resulting in stable unidirectional locomotion. Consequently, the system can adapt to various environmental changes. Because the modules do not interact with each other, the system acts as a decentralized distributed system; thus, it is scalable to several body segments.</p>","PeriodicalId":50264,"journal":{"name":"Japan Journal of Industrial and Applied Mathematics","volume":"81 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japan Journal of Industrial and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13160-024-00653-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a module designed for the automatic parameter control of peristaltic locomotion systems. The module comprises two populations of oscillators, each responsible for controlling the phase of periodic elongation–contraction motion and the friction force exerted by the ground, respectively. The parameter control algorithm operates independently in each module, with parameters updated through a selection algorithm applied to the elements in each module. Peristaltic locomotion systems, equipped with the proposed modules in the body segments, exhibit autonomous parameter controls, resulting in stable unidirectional locomotion. Consequently, the system can adapt to various environmental changes. Because the modules do not interact with each other, the system acts as a decentralized distributed system; thus, it is scalable to several body segments.
期刊介绍:
Japan Journal of Industrial and Applied Mathematics (JJIAM) is intended to provide an international forum for the expression of new ideas, as well as a site for the presentation of original research in various fields of the mathematical sciences. Consequently the most welcome types of articles are those which provide new insights into and methods for mathematical structures of various phenomena in the natural, social and industrial sciences, those which link real-world phenomena and mathematics through modeling and analysis, and those which impact the development of the mathematical sciences. The scope of the journal covers applied mathematical analysis, computational techniques and industrial mathematics.