A new preconditioned Gauss-Seidel method for solving $${\mathcal {M}}$$ -tensor multi-linear system

IF 0.7 4区 数学 Q3 MATHEMATICS, APPLIED Japan Journal of Industrial and Applied Mathematics Pub Date : 2024-08-23 DOI:10.1007/s13160-024-00670-6
Xuan-Le An, Xin-Mei Lv, Shu-Xin Miao
{"title":"A new preconditioned Gauss-Seidel method for solving $${\\mathcal {M}}$$ -tensor multi-linear system","authors":"Xuan-Le An, Xin-Mei Lv, Shu-Xin Miao","doi":"10.1007/s13160-024-00670-6","DOIUrl":null,"url":null,"abstract":"<p>By utilizing some elements of each row of the majorization matrix associated with the coefficient tensor, we propose a preconditioner, and present the corresponding preconditioned Gauss–Seidel method for solving <span>\\({\\mathcal {M}}\\)</span>-tensor multi-linear system. Theoretically, we give the convergence and comparison theorems of the proposed preconditioned Gauss–Seidel method. Numerically, we show the correctness of theoretical results and the efficiency of the proposed preconditioner by some examples.</p>","PeriodicalId":50264,"journal":{"name":"Japan Journal of Industrial and Applied Mathematics","volume":"59 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japan Journal of Industrial and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13160-024-00670-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

By utilizing some elements of each row of the majorization matrix associated with the coefficient tensor, we propose a preconditioner, and present the corresponding preconditioned Gauss–Seidel method for solving \({\mathcal {M}}\)-tensor multi-linear system. Theoretically, we give the convergence and comparison theorems of the proposed preconditioned Gauss–Seidel method. Numerically, we show the correctness of theoretical results and the efficiency of the proposed preconditioner by some examples.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于求解 $${mathcal {M}}$ 张量多线性系统的新型预处理高斯-赛德尔方法
通过利用与系数张量相关的大化矩阵每行的一些元素,我们提出了一种预处理方法,并给出了相应的预处理高斯-赛德尔方法,用于求解({\mathcal {M}}\)张量多线性系统。从理论上,我们给出了所提出的预条件高斯-赛德尔方法的收敛性和比较定理。在数值上,我们通过一些例子证明了理论结果的正确性和所提预处理方法的高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
56
审稿时长
>12 weeks
期刊介绍: Japan Journal of Industrial and Applied Mathematics (JJIAM) is intended to provide an international forum for the expression of new ideas, as well as a site for the presentation of original research in various fields of the mathematical sciences. Consequently the most welcome types of articles are those which provide new insights into and methods for mathematical structures of various phenomena in the natural, social and industrial sciences, those which link real-world phenomena and mathematics through modeling and analysis, and those which impact the development of the mathematical sciences. The scope of the journal covers applied mathematical analysis, computational techniques and industrial mathematics.
期刊最新文献
An instability framework of Hopf–Turing–Turing singularity in 2-component reaction–diffusion systems Comprehensive and practical optimal delivery planning system for replacing liquefied petroleum gas cylinders Mathematical analysis of a norm-conservative numerical scheme for the Ostrovsky equation A new preconditioned Gauss-Seidel method for solving $${\mathcal {M}}$$ -tensor multi-linear system Convergence error analysis of reflected gradient Langevin dynamics for non-convex constrained optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1