Three-stage model predictive control for modular multilevel converters with comprehensive performance optimization

IF 1.3 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Power Electronics Pub Date : 2024-04-03 DOI:10.1007/s43236-024-00789-2
{"title":"Three-stage model predictive control for modular multilevel converters with comprehensive performance optimization","authors":"","doi":"10.1007/s43236-024-00789-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Model predictive control (MPC) is recognized as an efficient control method for the modular multilevel converter (MMC), owing to its advantages, such as good robustness, rapid dynamic response, and multi-objective control. However, due to the coupling relationship between the ac-side current and the circulating current, the existing MPC has an impact on the ac-side current while suppressing the circulating current. In this paper, the relationship between the ac-side current performance and circulating current suppression is discussed in detail, and a three-stage MPC (TS-MPC) strategy is proposed to optimize the comprehensive performance. With the ac-side current control, circulating current control, and comprehensive optimization control, the optimum performance of both the ac-side current and circulating current suppression is realized while maintaining a low computational burden. Moreover, a grouping sorting algorithm is designed to reduce the calculation burden and to balance the capacitor voltages. The steady-state and transient performances of the proposed TS-MPC strategy have been verified by experimental results, which validates its correctness and effectiveness.</p>","PeriodicalId":50081,"journal":{"name":"Journal of Power Electronics","volume":"21 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43236-024-00789-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Model predictive control (MPC) is recognized as an efficient control method for the modular multilevel converter (MMC), owing to its advantages, such as good robustness, rapid dynamic response, and multi-objective control. However, due to the coupling relationship between the ac-side current and the circulating current, the existing MPC has an impact on the ac-side current while suppressing the circulating current. In this paper, the relationship between the ac-side current performance and circulating current suppression is discussed in detail, and a three-stage MPC (TS-MPC) strategy is proposed to optimize the comprehensive performance. With the ac-side current control, circulating current control, and comprehensive optimization control, the optimum performance of both the ac-side current and circulating current suppression is realized while maintaining a low computational burden. Moreover, a grouping sorting algorithm is designed to reduce the calculation burden and to balance the capacitor voltages. The steady-state and transient performances of the proposed TS-MPC strategy have been verified by experimental results, which validates its correctness and effectiveness.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模块化多电平转换器的三级模型预测控制与综合性能优化
摘要 模型预测控制(MPC)具有良好的鲁棒性、快速动态响应和多目标控制等优点,被认为是模块化多电平转换器(MMC)的一种有效控制方法。然而,由于交流侧电流与环流之间的耦合关系,现有的 MPC 在抑制环流的同时也会对交流侧电流产生影响。本文详细讨论了交流侧电流性能与环流抑制之间的关系,并提出了优化综合性能的三级 MPC(TS-MPC)策略。通过交流侧电流控制、环流控制和综合优化控制,在保持较低计算负担的同时,实现了交流侧电流和环流抑制的最佳性能。此外,还设计了分组排序算法,以减轻计算负担并平衡电容器电压。实验结果验证了所提出的 TS-MPC 策略的稳态和瞬态性能,从而证明了其正确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Power Electronics
Journal of Power Electronics 工程技术-工程:电子与电气
CiteScore
2.30
自引率
21.40%
发文量
195
审稿时长
3.6 months
期刊介绍: The scope of Journal of Power Electronics includes all issues in the field of Power Electronics. Included are techniques for power converters, adjustable speed drives, renewable energy, power quality and utility applications, analysis, modeling and control, power devices and components, power electronics education, and other application.
期刊最新文献
Design of DC bus voltage high dynamic performance control for single-phase converters Parallel connected triple-active-bridge converters with current and voltage balancing coupled inductor for bipolar DC distribution Modelling of SiC MOSFET power devices incorporating physical effects Self-decoupled coupler based dual-coupled LCC-LCC rotating wireless power transfer system with enhanced output power Fault location and type identification method for current and voltage sensors in traction rectifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1