He Zhendong, Gao Xiangyang, Liu Zhiyuan, An Xiaoyu, Zheng Anping
{"title":"Rail surface defect data enhancement method based on improved ACGAN","authors":"He Zhendong, Gao Xiangyang, Liu Zhiyuan, An Xiaoyu, Zheng Anping","doi":"10.3389/fnbot.2024.1397369","DOIUrl":null,"url":null,"abstract":"Rail surface defects present a significant safety concern in railway operations. However, the scarcity of data poses challenges for employing deep learning in defect detection. This study proposes an enhanced ACGAN augmentation method to address these issues. Residual blocks mitigate vanishing gradient problems, while a spectral norm regularization-constrained discriminator improves stability and image quality. Substituting the generator’s deconvolution layer with upsampling and convolution operations enhances computational efficiency. A gradient penalty mechanism based on regret values addresses gradient abnormality concerns. Experimental validation demonstrates superior image clarity and classification accuracy compared to ACGAN, with a 17.6% reduction in FID value. MNIST dataset experiments verify the model’s generalization ability. This approach offers practical value for real-world applications.","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"15 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1397369","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Rail surface defects present a significant safety concern in railway operations. However, the scarcity of data poses challenges for employing deep learning in defect detection. This study proposes an enhanced ACGAN augmentation method to address these issues. Residual blocks mitigate vanishing gradient problems, while a spectral norm regularization-constrained discriminator improves stability and image quality. Substituting the generator’s deconvolution layer with upsampling and convolution operations enhances computational efficiency. A gradient penalty mechanism based on regret values addresses gradient abnormality concerns. Experimental validation demonstrates superior image clarity and classification accuracy compared to ACGAN, with a 17.6% reduction in FID value. MNIST dataset experiments verify the model’s generalization ability. This approach offers practical value for real-world applications.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.