Leandro Pio de Sousa, Jorge Maurício Costa Mondego
{"title":"Leaf surface microbiota transplantation confers resistance to the coffee leaf rust in susceptible Coffea arabica","authors":"Leandro Pio de Sousa, Jorge Maurício Costa Mondego","doi":"10.1093/femsec/fiae049","DOIUrl":null,"url":null,"abstract":"Coffee leaf rust, caused by the fungus Hemileia vastatrix, became a major concern for coffee-producing countries. Additionally, there is an increase in the resistance of certain races of the fungus to fungicides and breeding cultivars, making producers to use alternative control methods. In this work, we transplanted the leaf surface microbiota of rust-resistant coffee species (Coffea racemosa and Coffea stenophylla) to Coffea arabica and tested whether the new microbiota would be able to minimize the damage caused by H. vastatrix. It was seen that the transplant was successful in controlling rust, especially from C. stenophylla, but the protection depended on the concentration of the microbiota. Certain fungi such as Acrocalymma, Bipolaris, Didymella, Nigrospora, Setophaeosphaeria, Simplicillium, Stagonospora, Torula and bacteria such as Chryseobacterium, Sphingobium and especially Enterobacter and have their populations increased and may be related to the antagonism seen against H. vastatrix. Interestingly, relative population of bacteria from genera Pantoea, Methylobacterium and Sphingomonas decreased after transplant, suggesting a positive interaction between them and H. vastatrix development. Our findings may help to better understand the role of the microbiota in coffee leaf rust as well as help to optimize the development of biocontrol agents.","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"49 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae049","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Coffee leaf rust, caused by the fungus Hemileia vastatrix, became a major concern for coffee-producing countries. Additionally, there is an increase in the resistance of certain races of the fungus to fungicides and breeding cultivars, making producers to use alternative control methods. In this work, we transplanted the leaf surface microbiota of rust-resistant coffee species (Coffea racemosa and Coffea stenophylla) to Coffea arabica and tested whether the new microbiota would be able to minimize the damage caused by H. vastatrix. It was seen that the transplant was successful in controlling rust, especially from C. stenophylla, but the protection depended on the concentration of the microbiota. Certain fungi such as Acrocalymma, Bipolaris, Didymella, Nigrospora, Setophaeosphaeria, Simplicillium, Stagonospora, Torula and bacteria such as Chryseobacterium, Sphingobium and especially Enterobacter and have their populations increased and may be related to the antagonism seen against H. vastatrix. Interestingly, relative population of bacteria from genera Pantoea, Methylobacterium and Sphingomonas decreased after transplant, suggesting a positive interaction between them and H. vastatrix development. Our findings may help to better understand the role of the microbiota in coffee leaf rust as well as help to optimize the development of biocontrol agents.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms