首页 > 最新文献

FEMS microbiology ecology最新文献

英文 中文
Temperature induced changes in the relevance of viral lysis and microzooplankton grazing of Antarctic phytoplankton indicates future alterations in seasonal carbon flow.
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-02-17 DOI: 10.1093/femsec/fiae158
T E G Biggs, G J Piedade, E M Wesdorp, M P Meredith, C Evans, C P D Brussaard

Phytoplankton play a pivotal role as the primary producers in polar marine ecosystems. Despite evidence suggesting that production rates and loss factors vary from year to year, and thus drive dynamic ecosystem functioning, interannual comparisons remain sparse. In this study, we examined viral lysis and microzooplankton grazing rates on Antarctic phytoplankton during two productive seasons and compared them with published data from a previous year. Higher rates of phytoplankton gross growth and total mortality during the warmer productive season suggest global warming induced increases in the magnitude of ecosystem carbon flow. Viral lysis rates appear to be relatively independent of average seasonal temperatures, whereas grazing rates were lower during the colder productive seasons (average temperature <0 °C). This resulted in a greater relative impact of viral lysis on phytoplankton mortality, particularly pronounced during periods of phytoplankton accumulation. The interannual variations in phytoplankton fate are likely due to a stronger coupling between rates of viral infection and phytoplankton growth compared with grazing. Our results emphasize the importance of monitoring rates of viral lysis, specifically in combination with the size and taxonomy of the phytoplankton community. Collectively these factors determine the relative significance of the different carbon fates, and hence the ocean's efficacy as a carbon sink.

{"title":"Temperature induced changes in the relevance of viral lysis and microzooplankton grazing of Antarctic phytoplankton indicates future alterations in seasonal carbon flow.","authors":"T E G Biggs, G J Piedade, E M Wesdorp, M P Meredith, C Evans, C P D Brussaard","doi":"10.1093/femsec/fiae158","DOIUrl":"https://doi.org/10.1093/femsec/fiae158","url":null,"abstract":"<p><p>Phytoplankton play a pivotal role as the primary producers in polar marine ecosystems. Despite evidence suggesting that production rates and loss factors vary from year to year, and thus drive dynamic ecosystem functioning, interannual comparisons remain sparse. In this study, we examined viral lysis and microzooplankton grazing rates on Antarctic phytoplankton during two productive seasons and compared them with published data from a previous year. Higher rates of phytoplankton gross growth and total mortality during the warmer productive season suggest global warming induced increases in the magnitude of ecosystem carbon flow. Viral lysis rates appear to be relatively independent of average seasonal temperatures, whereas grazing rates were lower during the colder productive seasons (average temperature <0 °C). This resulted in a greater relative impact of viral lysis on phytoplankton mortality, particularly pronounced during periods of phytoplankton accumulation. The interannual variations in phytoplankton fate are likely due to a stronger coupling between rates of viral infection and phytoplankton growth compared with grazing. Our results emphasize the importance of monitoring rates of viral lysis, specifically in combination with the size and taxonomy of the phytoplankton community. Collectively these factors determine the relative significance of the different carbon fates, and hence the ocean's efficacy as a carbon sink.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143440436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The nasal microbiota of two marine fish species: diversity, community structure, variability and first insights into the impacts of climate change-related stressors.
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-02-17 DOI: 10.1093/femsec/fiaf018
Mishal Cohen-Rengifo, Cyril Noel, Elisabeth Ytteborg, Marie-Laure Bégout, Carlo C Lazado, Gwenaelle Le Blay, Dominique Hervio-Heath

Vertebrate nasal microbiota (NM) plays a key role regulating host olfaction, immunity, neuronal differentiation, and structuring the epithelium. However, little is known in fish. This study provides the first comprehensive analysis of the NM in two marine fish species, the European seabass and the Atlantic cod. Given its direct environmental exposure, fish NM is likely influenced by seawater fluctuations. We analysed the community structure, specificity regarding seawater, and interindividual variability of 32 to 38 fish reared under ambient conditions. Additionally, we conducted an experiment to investigate the influence of acidification and a simplified heatwave on cod NM (3 fish per replicate). High-throughput 16S rRNA sequencing revealed species-specific NM communities at the genus-level with Stenotrophomonas and Ralstonia dominating seabass and cod NM, respectively. This suggests potential habitat- or physiology-related adaptations. The most abundant bacterial genera in seabass NM were also present in seawater, suggesting environmental acquisition. Alpha diversity was highest in Brest seabass NM and variability greatest in Tromsø cod NM. Simulated climate change-related scenarios did not significantly alter cod NM structure. We propose a minimum of 13 cod rosettes per replicate for future studies. This research establishes a foundation for understanding marine fish NM and its response to environmental changes.

{"title":"The nasal microbiota of two marine fish species: diversity, community structure, variability and first insights into the impacts of climate change-related stressors.","authors":"Mishal Cohen-Rengifo, Cyril Noel, Elisabeth Ytteborg, Marie-Laure Bégout, Carlo C Lazado, Gwenaelle Le Blay, Dominique Hervio-Heath","doi":"10.1093/femsec/fiaf018","DOIUrl":"https://doi.org/10.1093/femsec/fiaf018","url":null,"abstract":"<p><p>Vertebrate nasal microbiota (NM) plays a key role regulating host olfaction, immunity, neuronal differentiation, and structuring the epithelium. However, little is known in fish. This study provides the first comprehensive analysis of the NM in two marine fish species, the European seabass and the Atlantic cod. Given its direct environmental exposure, fish NM is likely influenced by seawater fluctuations. We analysed the community structure, specificity regarding seawater, and interindividual variability of 32 to 38 fish reared under ambient conditions. Additionally, we conducted an experiment to investigate the influence of acidification and a simplified heatwave on cod NM (3 fish per replicate). High-throughput 16S rRNA sequencing revealed species-specific NM communities at the genus-level with Stenotrophomonas and Ralstonia dominating seabass and cod NM, respectively. This suggests potential habitat- or physiology-related adaptations. The most abundant bacterial genera in seabass NM were also present in seawater, suggesting environmental acquisition. Alpha diversity was highest in Brest seabass NM and variability greatest in Tromsø cod NM. Simulated climate change-related scenarios did not significantly alter cod NM structure. We propose a minimum of 13 cod rosettes per replicate for future studies. This research establishes a foundation for understanding marine fish NM and its response to environmental changes.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143440438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Eggs to Guts: Symbiotic Association of Sodalis nezarae sp. nov. with the Southern Green Shield Bug Nezara viridula.
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-02-12 DOI: 10.1093/femsec/fiaf017
Magda A Rogowska-van der Molen, Alejandro Manzano-Marín, Jelle L Postma, Silvia Coolen, Theo van Alen, Robert S Jansen, Cornelia U Welte

Phytophagous insects engage in symbiotic relationships with bacteria that contribute to digestion, nutrient supplementation, and development of the host. The analysis of shield bug microbiomes has been mainly focused on the gut intestinal tract predominantly colonized by Pantoea symbionts, and other microbial community members in the gut or other organs have hardly been investigated. In this study, we reveal that the Southern green shield bug Nezara viridula harbours a Sodalis symbiont in several organs, with a notable prevalence in salivary glands, and anterior regions of the midgut. Removing external egg microbiota via sterilization profoundly impacted insect viability but did not disrupt the vertical transmission of Sodalis and Pantoea symbionts. Based on the dominance of Sodalis in testes, we deduce that N. viridula males could be involved in symbiont vertical transmission. Genomic analyses comparing Sodalis species revealed that Sodalis sp. Nvir shares characteristics with both free-living and obligate insect-associated Sodalis spp. Sodalis sp. Nvir also displays genome instability typical of endosymbiont lineages, which suggests ongoing speciation to an obligate endosymbiont. Together, our study reveals that shield bugs harbour unrecognized symbionts that might be paternally transmitted.

{"title":"From Eggs to Guts: Symbiotic Association of Sodalis nezarae sp. nov. with the Southern Green Shield Bug Nezara viridula.","authors":"Magda A Rogowska-van der Molen, Alejandro Manzano-Marín, Jelle L Postma, Silvia Coolen, Theo van Alen, Robert S Jansen, Cornelia U Welte","doi":"10.1093/femsec/fiaf017","DOIUrl":"https://doi.org/10.1093/femsec/fiaf017","url":null,"abstract":"<p><p>Phytophagous insects engage in symbiotic relationships with bacteria that contribute to digestion, nutrient supplementation, and development of the host. The analysis of shield bug microbiomes has been mainly focused on the gut intestinal tract predominantly colonized by Pantoea symbionts, and other microbial community members in the gut or other organs have hardly been investigated. In this study, we reveal that the Southern green shield bug Nezara viridula harbours a Sodalis symbiont in several organs, with a notable prevalence in salivary glands, and anterior regions of the midgut. Removing external egg microbiota via sterilization profoundly impacted insect viability but did not disrupt the vertical transmission of Sodalis and Pantoea symbionts. Based on the dominance of Sodalis in testes, we deduce that N. viridula males could be involved in symbiont vertical transmission. Genomic analyses comparing Sodalis species revealed that Sodalis sp. Nvir shares characteristics with both free-living and obligate insect-associated Sodalis spp. Sodalis sp. Nvir also displays genome instability typical of endosymbiont lineages, which suggests ongoing speciation to an obligate endosymbiont. Together, our study reveals that shield bugs harbour unrecognized symbionts that might be paternally transmitted.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143406518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Limited similarity in microbial composition among coral reef fishes from the Great Barrier Reef, Australia.
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-02-06 DOI: 10.1093/femsec/fiaf016
Vincenzo A Costa, David R Bellwood, Jonathon C O Mifsud, Jemma L Geoghegan, Erin Harvey, Edward C Holmes

Reef fishes exhibit enormous biodiversity within a highly interactive ecosystem. Relatively little is known about the diversity and evolution of microbial species associated with reef fish, even though this may provide valuable insights into the factors that shape microbial communities. Through metatranscriptomic sequencing we characterised the viruses, bacteria, and single-celled eukaryotes from 126 reef fish species inhabiting Lizard Island and Orpheus Island on the Great Barrier Reef, Australia. We assessed whether microbial communities differed between islands that are separated by 450 kilometres, and to what extent fish viruses emerge in new hosts. Despite strong ecological interactions within the species-rich reef environment, and the presence of the same families of viruses on both islands, there was minimal evidence for the presence of individual viruses shared among fish species, reflecting low levels of cross-species transmission. Among bacteria, we identified the opportunistic bacterial pathogen Photobacterium damselae in apparently healthy cardinalfish species from both islands, indicating that these fish species are natural reservoirs. These data suggest that reef fishes have microbial-host associations that arose prior to the formation of the Great Barrier Reef, likely leading to strong host barriers to cross-species transmission and hence infectious disease emergence.

{"title":"Limited similarity in microbial composition among coral reef fishes from the Great Barrier Reef, Australia.","authors":"Vincenzo A Costa, David R Bellwood, Jonathon C O Mifsud, Jemma L Geoghegan, Erin Harvey, Edward C Holmes","doi":"10.1093/femsec/fiaf016","DOIUrl":"https://doi.org/10.1093/femsec/fiaf016","url":null,"abstract":"<p><p>Reef fishes exhibit enormous biodiversity within a highly interactive ecosystem. Relatively little is known about the diversity and evolution of microbial species associated with reef fish, even though this may provide valuable insights into the factors that shape microbial communities. Through metatranscriptomic sequencing we characterised the viruses, bacteria, and single-celled eukaryotes from 126 reef fish species inhabiting Lizard Island and Orpheus Island on the Great Barrier Reef, Australia. We assessed whether microbial communities differed between islands that are separated by 450 kilometres, and to what extent fish viruses emerge in new hosts. Despite strong ecological interactions within the species-rich reef environment, and the presence of the same families of viruses on both islands, there was minimal evidence for the presence of individual viruses shared among fish species, reflecting low levels of cross-species transmission. Among bacteria, we identified the opportunistic bacterial pathogen Photobacterium damselae in apparently healthy cardinalfish species from both islands, indicating that these fish species are natural reservoirs. These data suggest that reef fishes have microbial-host associations that arose prior to the formation of the Great Barrier Reef, likely leading to strong host barriers to cross-species transmission and hence infectious disease emergence.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143364183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bark beetle infestation alters mycobiomes in wood, litter and soil associated with Norway spruce.
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-01-31 DOI: 10.1093/femsec/fiaf015
Diana Masch, François Buscot, Wolfgang Rohe, Kezia Goldmann

Recent exceptionally hot and dry summers provoked massive bark beetle outbreaks in German forests, which killed many conifers, forcing to clear-cut complete non-mature stands. The importance of fungi in ecosystems in particular in association with trees is widely recognized, but the ecology of how insect infestations of trees affects their mycobiomes remains poorly understood. Using Illumina MiSeq sequencing, we investigated fungal communities in soil, litter and stem-wood at early and late stages of bark beetle infestation in a Norway spruce (Picea abies (L.) Karst) stand in Central Germany. Fungal diversity decreased from soil to wood, with the highest proportion of unknown fungi in stem-wood. Lifestyles, particularly of those fungi associated with stem-wood, clearly changed depending on the infestation stage. The answer of tree associated fungi to beetle infestation was characterized by an increasing community dissimilarity among all three habitats, i.e. it concerned not only the above ground fungal communities directly connected to the tree. Our study, thus, pin points the cascading effects of tree infestations by bark beetles and subsequent tree dieback on the proximate and distant mycobiomes of the plant soil system, which should be entirely considered to tackle the effects of environmental events on tree health.

{"title":"Bark beetle infestation alters mycobiomes in wood, litter and soil associated with Norway spruce.","authors":"Diana Masch, François Buscot, Wolfgang Rohe, Kezia Goldmann","doi":"10.1093/femsec/fiaf015","DOIUrl":"https://doi.org/10.1093/femsec/fiaf015","url":null,"abstract":"<p><p>Recent exceptionally hot and dry summers provoked massive bark beetle outbreaks in German forests, which killed many conifers, forcing to clear-cut complete non-mature stands. The importance of fungi in ecosystems in particular in association with trees is widely recognized, but the ecology of how insect infestations of trees affects their mycobiomes remains poorly understood. Using Illumina MiSeq sequencing, we investigated fungal communities in soil, litter and stem-wood at early and late stages of bark beetle infestation in a Norway spruce (Picea abies (L.) Karst) stand in Central Germany. Fungal diversity decreased from soil to wood, with the highest proportion of unknown fungi in stem-wood. Lifestyles, particularly of those fungi associated with stem-wood, clearly changed depending on the infestation stage. The answer of tree associated fungi to beetle infestation was characterized by an increasing community dissimilarity among all three habitats, i.e. it concerned not only the above ground fungal communities directly connected to the tree. Our study, thus, pin points the cascading effects of tree infestations by bark beetles and subsequent tree dieback on the proximate and distant mycobiomes of the plant soil system, which should be entirely considered to tackle the effects of environmental events on tree health.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143074435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: FEMS EC Thematic Issue "Aquatic Microbial Ecology". 编辑FEMS EC专题问题水生微生物生态学。
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-01-28 DOI: 10.1093/femsec/fiaf005
Martin W Hahn, Veljo Kisand
{"title":"Editorial: FEMS EC Thematic Issue \"Aquatic Microbial Ecology\".","authors":"Martin W Hahn, Veljo Kisand","doi":"10.1093/femsec/fiaf005","DOIUrl":"10.1093/femsec/fiaf005","url":null,"abstract":"","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775825/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143002943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vintage and terroir are the strongest determinants of grapevine carposphere microbiome in the viticultural zone of Drama, Greece. 葡萄年份和风土是希腊Drama葡萄种植区葡萄圈微生物群的最强决定因素。
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-01-28 DOI: 10.1093/femsec/fiaf008
Fotios Bekris, Elena Papadopoulou, Sotirios Vasileiadis, Nikolaos Karapetsas, Serafeim Theocharis, Thomas K Alexandridis, Stefanos Koundouras, Dimitrios G Karpouzas

The role of microbial terroir for enhancing the geographical origin of wines is well appreciated. Still, we lack a good understanding of the assembly mechanisms driving carposphere grapevine microbiota. We investigated the role of cultivar, vintage, terroir units (TUs), and vineyard geographic location on the composition of the carpospheric microbiota of three important cultivars in the viticultural zone of Drama, Greece using amplicon sequencing. Our strategy to define TUs based on georeferencing analysis allowed us to disentangle the effects of TU and vineyards geographic location, considered as a lumped factor in most studies to date. We hypothesized that (i) these factors contribute differently on the assembly of the carposphere microbiome and that (ii) fungal and bacterial communities follow different assembly mechanisms. Vintage and TU were the stronger determinants of the carposphere fungal and bacterial communities, although the latter showed weaker response. The stronger effect of TU over vineyard geography and cultivar reinforces the role of microbial terroir in viticulture. We identified fungi (Cladosporium, Aureobasidium, Alternaria) and bacteria (Pseudomonas, Methylobacterium, Sphingomonadaceae) as main members of the core microbiome. These microorganisms were associated with specific cultivars and TUs, a feature that could be pursued towards a new microbiome-modulated paradigm of viticulture.

微生物风土在提高葡萄酒的地理来源方面的作用是值得赞赏的。尽管如此,我们对驱动汽车圈葡萄菌群的组装机制缺乏很好的理解。利用扩增子测序技术,研究了希腊Drama葡萄种植区3个重要葡萄品种的品种、年份、风土单位(terroir units, TUs)和葡萄园地理位置对其碳圈微生物组成的影响。我们基于地理参考分析定义TU的策略使我们能够解开TU和葡萄园地理位置的影响,这在迄今为止的大多数研究中被认为是一个集中因素。我们假设:(i)这些因素对碳圈微生物组的组装有不同的贡献;(ii)真菌和细菌群落遵循不同的组装机制。葡萄年份和TU是碳圈真菌和细菌群落的较强决定因素,尽管后者表现出较弱的反应。TU对葡萄园地理和栽培的强烈影响强化了微生物风土在葡萄栽培中的作用。我们确定真菌(Cladosporium, Aureobasidium, Alternaria)和细菌(Pseudomonas, Methylobacterium, Sphingomonadaceae)是核心微生物组的主要成员。这些微生物与特定的栽培品种和TUs相关,这一特征可以追求一种新的葡萄栽培微生物组调节范式。
{"title":"Vintage and terroir are the strongest determinants of grapevine carposphere microbiome in the viticultural zone of Drama, Greece.","authors":"Fotios Bekris, Elena Papadopoulou, Sotirios Vasileiadis, Nikolaos Karapetsas, Serafeim Theocharis, Thomas K Alexandridis, Stefanos Koundouras, Dimitrios G Karpouzas","doi":"10.1093/femsec/fiaf008","DOIUrl":"10.1093/femsec/fiaf008","url":null,"abstract":"<p><p>The role of microbial terroir for enhancing the geographical origin of wines is well appreciated. Still, we lack a good understanding of the assembly mechanisms driving carposphere grapevine microbiota. We investigated the role of cultivar, vintage, terroir units (TUs), and vineyard geographic location on the composition of the carpospheric microbiota of three important cultivars in the viticultural zone of Drama, Greece using amplicon sequencing. Our strategy to define TUs based on georeferencing analysis allowed us to disentangle the effects of TU and vineyards geographic location, considered as a lumped factor in most studies to date. We hypothesized that (i) these factors contribute differently on the assembly of the carposphere microbiome and that (ii) fungal and bacterial communities follow different assembly mechanisms. Vintage and TU were the stronger determinants of the carposphere fungal and bacterial communities, although the latter showed weaker response. The stronger effect of TU over vineyard geography and cultivar reinforces the role of microbial terroir in viticulture. We identified fungi (Cladosporium, Aureobasidium, Alternaria) and bacteria (Pseudomonas, Methylobacterium, Sphingomonadaceae) as main members of the core microbiome. These microorganisms were associated with specific cultivars and TUs, a feature that could be pursued towards a new microbiome-modulated paradigm of viticulture.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11797032/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143002947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Delayed feeding disrupts diurnal oscillations in the gut microbiome of a neotropical bat in captivity.
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-01-28 DOI: 10.1093/femsec/fiaf012
Dominik W Melville, Magdalena Meyer, Corbinian Kümmerle, Kevin A Alvarado-Barrantes, Kerstin Wilhelm, Simone Sommer, Marco Tschapka, Alice Risely

Diurnal rhythms of the gut microbiota are emerging as an important yet often overlooked facet of microbial ecology. Feeding is thought to stimulate gut microbial rhythmicity, but this has not been explicitly tested. Moreover, the role of the gut environment is entirely unexplored, with rhythmic changes to gut pH rather than feeding per se possibly affecting gut microbial fluctuations. In this study, we experimentally manipulated the feeding schedule of captive lesser long-nosed bats, Leptonycteris yerbabuenae, to dissociate photic and feeding cues, and measured the faecal microbiota and gut pH every 2 h. We detected strong diurnal rhythms in both microbial alpha diversity and beta diversity as well as in pH within the control group. However, a delay in feeding disrupted oscillations of gut microbial diversity and composition, but did not affect rhythms in gut pH. The oscillations of some genera, such as Streptococcus, which aid in metabolizing nutrients, shifted in accordance with the delayed-feeding cue and were correlated with pH. For other bacterial genera, oscillations were disturbed and no connection to pH was found. Our findings suggest that the rhythmic proliferation of bacteria matches peak feeding times, providing evidence that diurnal rhythms of the gut microbiota likely evolved to optimize their metabolic support to the host's circadian phenotype.

{"title":"Delayed feeding disrupts diurnal oscillations in the gut microbiome of a neotropical bat in captivity.","authors":"Dominik W Melville, Magdalena Meyer, Corbinian Kümmerle, Kevin A Alvarado-Barrantes, Kerstin Wilhelm, Simone Sommer, Marco Tschapka, Alice Risely","doi":"10.1093/femsec/fiaf012","DOIUrl":"10.1093/femsec/fiaf012","url":null,"abstract":"<p><p>Diurnal rhythms of the gut microbiota are emerging as an important yet often overlooked facet of microbial ecology. Feeding is thought to stimulate gut microbial rhythmicity, but this has not been explicitly tested. Moreover, the role of the gut environment is entirely unexplored, with rhythmic changes to gut pH rather than feeding per se possibly affecting gut microbial fluctuations. In this study, we experimentally manipulated the feeding schedule of captive lesser long-nosed bats, Leptonycteris yerbabuenae, to dissociate photic and feeding cues, and measured the faecal microbiota and gut pH every 2 h. We detected strong diurnal rhythms in both microbial alpha diversity and beta diversity as well as in pH within the control group. However, a delay in feeding disrupted oscillations of gut microbial diversity and composition, but did not affect rhythms in gut pH. The oscillations of some genera, such as Streptococcus, which aid in metabolizing nutrients, shifted in accordance with the delayed-feeding cue and were correlated with pH. For other bacterial genera, oscillations were disturbed and no connection to pH was found. Our findings suggest that the rhythmic proliferation of bacteria matches peak feeding times, providing evidence that diurnal rhythms of the gut microbiota likely evolved to optimize their metabolic support to the host's circadian phenotype.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783575/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oral amoxicillin treatment disrupts the gut microbiome and metabolome without interfering with luminal redox potential in the intestine of Wistar Han rats. 口服阿莫西林治疗会破坏肠道微生物组和代谢组,但不会干扰Wistar Han大鼠肠道的腔内氧化还原电位。
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-01-28 DOI: 10.1093/femsec/fiaf003
Sandra Bermúdez-Sánchez, Martin Iain Bahl, Egon Bech Hansen, Tine Rask Licht, Martin Frederik Laursen

Oral antibiotic treatment is well known to be one of the main factors affecting gut microbiota composition by altering bacterial diversity. It decreases the abundance of butyrate-producing bacteria such as Lachnospiraceae and Ruminococcaceae, while increasing abundance of Enterobacteriaceae. The recovery time of commensal bacteria post-antibiotic treatment varies among individuals, and often, complete recovery is not achieved. Recently, gut microbiota disruption has been associated with increased gut oxygen levels and higher redox potential in faecal samples. Given that redox balance is crucial for microbial metabolism and gut health, influencing fermentation processes and maintaining anaerobic conditions, we investigated the impact of oral amoxicillin treatment on the redox potential in the caecum. We used 24 Wistar Han male rats and measured caecal redox potential in situ with a probe, before and after 7 days of amoxicillin treatment, as well as after 7 days of recovery. Additionally, we analysed caecal weight, pH, antioxidant capacity, caecal microbiota, metabolome, and colonic tissue expression of relevant genes involved in the redox potential state. Our findings show that oral amoxicillin treatment significantly reduced archaeal load, and decreased the bacterial alpha diversity and affected bacterial composition of the caecal microbiome. The caecal metabolome was also significantly affected, exemplified by reduced amounts of short chain fatty acids during amoxicillin treatment. While the caecal metabolome fully recovered 7 days post amoxicillin treatment, the microbiome did not fully recover within this time frame. However, amoxicillin did not lead to an increase in luminal redox potential in the cecum during or post amoxicillin treatment. Limited differences were observed for colonic expression of genes involved in intestinal barrier function and generation of reactive oxygen species, except for the catalase gene, which was significantly upregulated post-amoxicillin treatment. Our results suggest that while oral amoxicillin disrupts the gut microbiome and metabolome, it does not directly interfere with gut luminal redox state.

众所周知,口服抗生素治疗是通过改变细菌多样性来影响肠道微生物群组成的主要因素之一。它降低了产丁酸菌(如Lachnospiraceae和Ruminococcaceae)的丰度,而增加了肠杆菌科(enterobacteraceae)的丰度。抗生素治疗后共生菌的恢复时间因人而异,往往不能完全恢复。最近,肠道微生物群的破坏与肠道氧水平的增加和粪便样本中更高的氧化还原电位有关。鉴于氧化还原平衡对微生物代谢和肠道健康至关重要,影响发酵过程和维持厌氧条件,我们研究了口服阿莫西林对盲肠氧化还原电位的影响。我们选用24只Wistar Han雄性大鼠,在阿莫西林治疗前、治疗后7天,以及康复后7天,用探针原位测量盲肠氧化还原电位。此外,我们分析了盲肠重量、pH值、抗氧化能力、盲肠微生物群、代谢组和参与氧化还原电位状态的相关基因的结肠组织表达。我们的研究结果表明,口服阿莫西林治疗显著降低了古菌负荷,降低了细菌α多样性,并影响了盲肠微生物组的细菌组成。盲肠代谢组也受到显著影响,例如阿莫西林治疗期间短链脂肪酸的减少。虽然盲肠代谢组在阿莫西林治疗后7天完全恢复,但微生物组在这段时间内没有完全恢复。然而,在阿莫西林治疗期间或之后,阿莫西林不会导致盲肠腔氧化还原电位的增加。除过氧化氢酶基因外,参与肠屏障功能和活性氧生成的基因在阿莫西林治疗后显著上调,其余基因的结肠表达差异有限。我们的研究结果表明,虽然口服阿莫西林会破坏肠道微生物组和代谢组,但它不会直接干扰肠道氧化还原状态。
{"title":"Oral amoxicillin treatment disrupts the gut microbiome and metabolome without interfering with luminal redox potential in the intestine of Wistar Han rats.","authors":"Sandra Bermúdez-Sánchez, Martin Iain Bahl, Egon Bech Hansen, Tine Rask Licht, Martin Frederik Laursen","doi":"10.1093/femsec/fiaf003","DOIUrl":"10.1093/femsec/fiaf003","url":null,"abstract":"<p><p>Oral antibiotic treatment is well known to be one of the main factors affecting gut microbiota composition by altering bacterial diversity. It decreases the abundance of butyrate-producing bacteria such as Lachnospiraceae and Ruminococcaceae, while increasing abundance of Enterobacteriaceae. The recovery time of commensal bacteria post-antibiotic treatment varies among individuals, and often, complete recovery is not achieved. Recently, gut microbiota disruption has been associated with increased gut oxygen levels and higher redox potential in faecal samples. Given that redox balance is crucial for microbial metabolism and gut health, influencing fermentation processes and maintaining anaerobic conditions, we investigated the impact of oral amoxicillin treatment on the redox potential in the caecum. We used 24 Wistar Han male rats and measured caecal redox potential in situ with a probe, before and after 7 days of amoxicillin treatment, as well as after 7 days of recovery. Additionally, we analysed caecal weight, pH, antioxidant capacity, caecal microbiota, metabolome, and colonic tissue expression of relevant genes involved in the redox potential state. Our findings show that oral amoxicillin treatment significantly reduced archaeal load, and decreased the bacterial alpha diversity and affected bacterial composition of the caecal microbiome. The caecal metabolome was also significantly affected, exemplified by reduced amounts of short chain fatty acids during amoxicillin treatment. While the caecal metabolome fully recovered 7 days post amoxicillin treatment, the microbiome did not fully recover within this time frame. However, amoxicillin did not lead to an increase in luminal redox potential in the cecum during or post amoxicillin treatment. Limited differences were observed for colonic expression of genes involved in intestinal barrier function and generation of reactive oxygen species, except for the catalase gene, which was significantly upregulated post-amoxicillin treatment. Our results suggest that while oral amoxicillin disrupts the gut microbiome and metabolome, it does not directly interfere with gut luminal redox state.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775830/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142947090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-inoculation with Bacillus thuringiensis RZ2MS9 and rhizobia improves the soybean development and modulates soil functional diversity.
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-01-28 DOI: 10.1093/femsec/fiaf013
Leandro Fonseca de Souza, Helena Gutierrez Oliveira, Thierry Alexandre Pellegrinetti, Lucas William Mendes, Maria Leticia Bonatelli, Aline Silva Romão Dumaresq, Vanessa V C Sinatti, José Baldin Pinheiro, João Lucio Azevedo, Maria Carolina Quecine

Despite the beneficial effects of plant growth-promoting rhizobacteria on agriculture, understanding the consequences of introducing foreign microbes into soil taxonomic and functional diversity is necessary. This study evaluated the effects co-inoculation of soybean with Bacillus thuringiensis (Bt) RZ2MS9 and commercial rhizobia on the natural microbial community structure and functional potential. Our results indicated that soybean development was positively influenced by co-inoculation, plants exhibited greater height and a higher number of pods, and no reductions in productivity estimates. Soil prokaryotic diversity and community structure remained unchanged by Bt RZMS9 inoculation or co-inoculation with rhizobia 147 days after sowing. However, functional diversity was influenced by sole Bt inoculation, potentially due to community quorum sensing disruption by N-acyl homoserine lactone hydrolases. The genes enriched by co-inoculation were mostly related to soil phosphorus cycling, with gcd showing the most pronounced increase. The nifA genes increased when rhizobia alone were inoculated, suggesting that this pathway could be affected by Bt RZ2MS9 inoculation. This study demonstrates the synergistic activity of rhizobia and Bt RZ2MS9 on soybean development, without significantly interfering with natural microbial community, presenting a promising approach for sustainable crop management.

{"title":"Co-inoculation with Bacillus thuringiensis RZ2MS9 and rhizobia improves the soybean development and modulates soil functional diversity.","authors":"Leandro Fonseca de Souza, Helena Gutierrez Oliveira, Thierry Alexandre Pellegrinetti, Lucas William Mendes, Maria Leticia Bonatelli, Aline Silva Romão Dumaresq, Vanessa V C Sinatti, José Baldin Pinheiro, João Lucio Azevedo, Maria Carolina Quecine","doi":"10.1093/femsec/fiaf013","DOIUrl":"10.1093/femsec/fiaf013","url":null,"abstract":"<p><p>Despite the beneficial effects of plant growth-promoting rhizobacteria on agriculture, understanding the consequences of introducing foreign microbes into soil taxonomic and functional diversity is necessary. This study evaluated the effects co-inoculation of soybean with Bacillus thuringiensis (Bt) RZ2MS9 and commercial rhizobia on the natural microbial community structure and functional potential. Our results indicated that soybean development was positively influenced by co-inoculation, plants exhibited greater height and a higher number of pods, and no reductions in productivity estimates. Soil prokaryotic diversity and community structure remained unchanged by Bt RZMS9 inoculation or co-inoculation with rhizobia 147 days after sowing. However, functional diversity was influenced by sole Bt inoculation, potentially due to community quorum sensing disruption by N-acyl homoserine lactone hydrolases. The genes enriched by co-inoculation were mostly related to soil phosphorus cycling, with gcd showing the most pronounced increase. The nifA genes increased when rhizobia alone were inoculated, suggesting that this pathway could be affected by Bt RZ2MS9 inoculation. This study demonstrates the synergistic activity of rhizobia and Bt RZ2MS9 on soybean development, without significantly interfering with natural microbial community, presenting a promising approach for sustainable crop management.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796456/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
FEMS microbiology ecology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1