Sabrina A Klick, Joseph S Pitula, Amy S Collick, Eric B May, Oliva Pisani
{"title":"Bacterial diversity in agricultural drainage ditches shifts with increasing urea-N concentrations","authors":"Sabrina A Klick, Joseph S Pitula, Amy S Collick, Eric B May, Oliva Pisani","doi":"10.1093/femsec/fiae057","DOIUrl":null,"url":null,"abstract":"Urea-based fertilizers applied to crop fields can enter surface waters of adjacent agricultural drainage ditches and contribute to nitrogen (N) loading to nearby watersheds. Management practices applied in drainage ditches promote N removal by the microbial communities, but little is known about the impacts of excess urea fertilizer from crop fields on the microbial diversity in these ditches. In 2017, sediments from drainage ditches next to corn and soybean fields were sampled to determine if fertilizer application and high urea-N concentrations alters bacterial diversity and urease gene abundances. A mesocosm experiment was paired with a field study to determine which bacterial groups respond to high urea-N concentrations. The bacterial diversity in the ditch next to corn fields was significantly different from the other site. The bacterial orders of Rhizobiales, Bacteroidales, Acidobacteriales, Burkholderiales, and Anaerolineales were most abundant in the ditch next to corn and increased after the addition of urea-N (0.5 mg N L−1) during the mesocosm experiment. The results of our study suggests that urea-N concentrations >0.07 mg N L−1, which are higher than concentrations associated with downstream harmful algal blooms, can lead to shifts in the bacterial communities of agricultural drainage ditches.","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae057","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Urea-based fertilizers applied to crop fields can enter surface waters of adjacent agricultural drainage ditches and contribute to nitrogen (N) loading to nearby watersheds. Management practices applied in drainage ditches promote N removal by the microbial communities, but little is known about the impacts of excess urea fertilizer from crop fields on the microbial diversity in these ditches. In 2017, sediments from drainage ditches next to corn and soybean fields were sampled to determine if fertilizer application and high urea-N concentrations alters bacterial diversity and urease gene abundances. A mesocosm experiment was paired with a field study to determine which bacterial groups respond to high urea-N concentrations. The bacterial diversity in the ditch next to corn fields was significantly different from the other site. The bacterial orders of Rhizobiales, Bacteroidales, Acidobacteriales, Burkholderiales, and Anaerolineales were most abundant in the ditch next to corn and increased after the addition of urea-N (0.5 mg N L−1) during the mesocosm experiment. The results of our study suggests that urea-N concentrations >0.07 mg N L−1, which are higher than concentrations associated with downstream harmful algal blooms, can lead to shifts in the bacterial communities of agricultural drainage ditches.
农田施用的尿素基肥料会进入邻近农业排水沟的地表水中,造成附近流域的氮(N)负荷。排水沟中施用的管理方法可促进微生物群落对氮的清除,但人们对来自作物田的过量尿素肥料对这些排水沟中微生物多样性的影响知之甚少。2017 年,对玉米田和大豆田旁排水沟的沉积物进行了取样,以确定施肥和高浓度尿素氮是否会改变细菌多样性和脲酶基因丰度。中观宇宙实验与实地研究相结合,以确定哪些细菌群对高浓度尿素氮做出反应。玉米田旁沟渠中的细菌多样性与其他地点有显著差异。玉米田旁的沟渠中根瘤菌属、类杆菌属、酸性杆菌属、伯克霍尔德菌属和厌氧菌属的细菌数量最多,并且在中观试验期间添加尿素-N(0.5 毫克 N L-1)后,这些细菌数量有所增加。我们的研究结果表明,尿素氮浓度>0.07 mg N L-1(高于下游有害藻类大量繁殖的浓度)可导致农业排水沟细菌群落的变化。
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms