Solving Schrödinger Wave Equation for the Charmonium Spectrum Using Artificial Neural Networks

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Advances in High Energy Physics Pub Date : 2024-04-03 DOI:10.1155/2024/5195790
Tariq Mahmood, Jumanah Ahmed Darwish, Talab Hussain, Maqsood Ahmed, Rehan Ahmad Khan Sherwani
{"title":"Solving Schrödinger Wave Equation for the Charmonium Spectrum Using Artificial Neural Networks","authors":"Tariq Mahmood, Jumanah Ahmed Darwish, Talab Hussain, Maqsood Ahmed, Rehan Ahmad Khan Sherwani","doi":"10.1155/2024/5195790","DOIUrl":null,"url":null,"abstract":"In this study, we solved the Schrödinger wave equation by using effective potential in an artificial neural network (ANN) for the mass spectrum of different charmonium states, including <span><svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 10.4717 9.39034\" width=\"10.4717pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,6.097,3.132)\"></path></g></svg>,</span> <span><svg height=\"10.2124pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -6.78297 12.9928 10.2124\" width=\"12.9928pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,7.917,3.132)\"></path></g></svg>,</span> <span><svg height=\"9.59912pt\" style=\"vertical-align:-3.63821pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 12.0532 9.59912\" width=\"12.0532pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,6.981,3.132)\"><use xlink:href=\"#g50-51\"></use></g></svg>,</span> and <span><svg height=\"9.59912pt\" style=\"vertical-align:-3.63821pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 14.2285 9.59912\" width=\"14.2285pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,2.175,0)\"><use xlink:href=\"#g113-244\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,9.156,3.132)\"></path></g></svg>.</span> The ANN approach provides an efficient, more general, and continuous solution-approximating strategy, thus eliminating the possibility of skipping any region of interest in mass spectroscopy. The close consistency of ANN results with the already-reported results from numerical and theoretical approaches and experimental ones shows the reliability and accuracy of the ANN approach.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"43 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2024/5195790","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we solved the Schrödinger wave equation by using effective potential in an artificial neural network (ANN) for the mass spectrum of different charmonium states, including , , , and . The ANN approach provides an efficient, more general, and continuous solution-approximating strategy, thus eliminating the possibility of skipping any region of interest in mass spectroscopy. The close consistency of ANN results with the already-reported results from numerical and theoretical approaches and experimental ones shows the reliability and accuracy of the ANN approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工神经网络求解查莫能谱的薛定谔波方程
在这项研究中,我们利用人工神经网络(ANN)中的有效电势求解了薛定谔波方程,得到了不同粲态(包括 、 、 和 )的质谱。人工神经网络方法提供了一种高效、通用和连续的求解逼近策略,从而消除了在质谱分析中跳过任何感兴趣区域的可能性。方差网络的结果与已报道的数值和理论方法以及实验结果非常一致,这表明了方差网络方法的可靠性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in High Energy Physics
Advances in High Energy Physics PHYSICS, PARTICLES & FIELDS-
CiteScore
3.40
自引率
5.90%
发文量
55
审稿时长
6-12 weeks
期刊介绍: Advances in High Energy Physics publishes the results of theoretical and experimental research on the nature of, and interaction between, energy and matter. Considering both original research and focussed review articles, the journal welcomes submissions from small research groups and large consortia alike.
期刊最新文献
Statistical Issues on the Neutrino Mass Hierarchy with Determination of the Energy Eigenvalues of the Varshni-Hellmann Potential Hint for a Minimal Interaction Length in Annihilation in Total Cross Section of Center-of-Mass Energies 55-207 GeV Dissociation of and Using Dissociation Energy Criteria in -Dimensional Space Creation Field Cosmological Model with Variable Cosmological Term () in Bianchi Type III Space-Time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1