The neutrino mass hierarchy determination (<svg height="6.20643pt" style="vertical-align:-0.2585797pt" version="1.1" viewbox="-0.0498162 -5.94785 6.02377 6.20643" width="6.02377pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g></svg> MHD) is one of the main goals of the major current and future neutrino experiments. The statistical analysis usually proceeds from a standard method, a single-dimensional estimator <svg height="15.2296pt" style="vertical-align:-3.6382pt" version="1.1" viewbox="-0.0498162 -11.5914 59.3592 15.2296" width="59.3592pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g><g transform="matrix(.013,0,0,-0.013,4.498,0)"></path></g><g transform="matrix(.013,0,0,-0.013,10.738,0)"></path></g><g transform="matrix(.013,0,0,-0.013,23.234,0)"></path></g><g transform="matrix(.013,0,0,-0.013,33.771,0)"><use xlink:href="#g113-133"></use></g><g transform="matrix(.013,0,0,-0.013,42.098,0)"><use xlink:href="#g113-244"></use></g><g transform="matrix(.0091,0,0,-0.0091,49.666,-5.741)"><use xlink:href="#g50-51"></use></g><g transform="matrix(.013,0,0,-0.013,54.612,0)"></path></g></svg> that shows some drawbacks and concerns, together with a debatable strategy. The drawbacks and considerations of the standard method will be explained through the following three main issues. The first issue corresponds to the limited power of the standard method. The <svg height="15.2296pt" style="vertical-align:-3.6382pt" version="1.1" viewbox="-0.0498162 -11.5914 21.0047 15.2296" width="21.0047pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-133"></use></g><g transform="matrix(.013,0,0,-0.013,8.327,0)"><use xlink:href="#g113-244"></use></g><g transform="matrix(.0091,0,0,-0.0091,15.895,-5.741)"><use xlink:href="#g50-51"></use></g></svg> estimator provides us with different results when different simulation procedures were used. Regarding the second issue, when <svg height="16.9233pt" style="vertical-align:-5.3319pt" version="1.1" viewbox="-0.0498162 -11.5914 43.1456 16.9233" width="43.1456pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-244"></use></g><g transform="matrix(.0091,0,0,-0.0091,7.568,-5.741)"><use xlink:href="#g50-51"></use></g><g transform="matrix(.0091,0,0,-0.0091,6.981,3.784)"></path></g><g transform="matrix(.0091,0,0,-0.0091,14.57,3.784)"></path></g><g transform="matrix(.0091,0,0,-0.0091,17.073,3.784)"></path></g><g transform="matrix(.0091,0,0,-0.0091,22.198,3.784)"></path></g><g transform="matrix(.0091,0,0,-0.0091,25.456,3.784)"></path></g><g transform="matrix(.0091,0,0,-0.0091,32.218,3.784)"></path></g><g transform="matrix(.0091,0,0,-0.0091,39.24,3.784)"></path></g></svg> and <svg heig
{"title":"Statistical Issues on the Neutrino Mass Hierarchy with","authors":"F. Sawy, L. Stanco","doi":"10.1155/2024/9339959","DOIUrl":"https://doi.org/10.1155/2024/9339959","url":null,"abstract":"The neutrino mass hierarchy determination (<svg height=\"6.20643pt\" style=\"vertical-align:-0.2585797pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.94785 6.02377 6.20643\" width=\"6.02377pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> MHD) is one of the main goals of the major current and future neutrino experiments. The statistical analysis usually proceeds from a standard method, a single-dimensional estimator <svg height=\"15.2296pt\" style=\"vertical-align:-3.6382pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 59.3592 15.2296\" width=\"59.3592pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,4.498,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,10.738,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,23.234,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,33.771,0)\"><use xlink:href=\"#g113-133\"></use></g><g transform=\"matrix(.013,0,0,-0.013,42.098,0)\"><use xlink:href=\"#g113-244\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,49.666,-5.741)\"><use xlink:href=\"#g50-51\"></use></g><g transform=\"matrix(.013,0,0,-0.013,54.612,0)\"></path></g></svg> that shows some drawbacks and concerns, together with a debatable strategy. The drawbacks and considerations of the standard method will be explained through the following three main issues. The first issue corresponds to the limited power of the standard method. The <svg height=\"15.2296pt\" style=\"vertical-align:-3.6382pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 21.0047 15.2296\" width=\"21.0047pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-133\"></use></g><g transform=\"matrix(.013,0,0,-0.013,8.327,0)\"><use xlink:href=\"#g113-244\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,15.895,-5.741)\"><use xlink:href=\"#g50-51\"></use></g></svg> estimator provides us with different results when different simulation procedures were used. Regarding the second issue, when <svg height=\"16.9233pt\" style=\"vertical-align:-5.3319pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 43.1456 16.9233\" width=\"43.1456pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-244\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,7.568,-5.741)\"><use xlink:href=\"#g50-51\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,6.981,3.784)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,14.57,3.784)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,17.073,3.784)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,22.198,3.784)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,25.456,3.784)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,32.218,3.784)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,39.24,3.784)\"></path></g></svg> and <svg heig","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"36 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140940173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we solve the bound state problem for the Varshni-Hellmann potential via a useful technique. In our technique, we obtain the bound state solution of the Schrödinger equation for the Varshni-Hellmann potential via ansatz method. We obtain the energy eigenvalues and the corresponding eigenfunctions. Also, the behavior of the energy spectra for both the ground and the excited state of the two body systems is illustrated graphically. The similarity of our results to the accurate numerical values is indicative of the efficiency of our technique.
{"title":"Determination of the Energy Eigenvalues of the Varshni-Hellmann Potential","authors":"N. Tazimi","doi":"10.1155/2024/5584682","DOIUrl":"https://doi.org/10.1155/2024/5584682","url":null,"abstract":"In this paper, we solve the bound state problem for the Varshni-Hellmann potential via a useful technique. In our technique, we obtain the bound state solution of the Schrödinger equation for the Varshni-Hellmann potential via ansatz method. We obtain the energy eigenvalues and the corresponding eigenfunctions. Also, the behavior of the energy spectra for both the ground and the excited state of the two body systems is illustrated graphically. The similarity of our results to the accurate numerical values is indicative of the efficiency of our technique.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"5 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140940171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The measurements of the total cross section of the <span><svg height="14.2262pt" style="vertical-align:-3.429501pt" version="1.1" viewbox="-0.0498162 -10.7967 44.732 14.2262" width="44.732pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-102"></use></g><g transform="matrix(.0091,0,0,-0.0091,5.382,-5.741)"><use xlink:href="#g54-36"></use></g><g transform="matrix(.013,0,0,-0.013,11.461,0)"><use xlink:href="#g113-102"></use></g><g transform="matrix(.0091,0,0,-0.0091,16.844,-5.741)"><use xlink:href="#g54-33"></use></g><g transform="matrix(.013,0,0,-0.013,26.554,0)"><use xlink:href="#g117-149"></use></g><g transform="matrix(.013,0,0,-0.013,32.33,0)"><use xlink:href="#g117-148"></use></g></svg><span></span><svg height="14.2262pt" style="vertical-align:-3.429501pt" version="1.1" viewbox="48.3921838 -10.7967 28.781 14.2262" width="28.781pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,48.442,0)"><use xlink:href="#g113-225"></use></g><g transform="matrix(.013,0,0,-0.013,54.958,0)"><use xlink:href="#g113-225"></use></g><g transform="matrix(.013,0,0,-0.013,61.474,0)"></path></g><g transform="matrix(.013,0,0,-0.013,65.972,0)"><use xlink:href="#g113-225"></use></g><g transform="matrix(.013,0,0,-0.013,72.488,0)"></path></g></svg></span> reaction from the VENUS, TOPAS, OPAL, DELPHI, ALEPH, and L3 collaborations, collected between 1989 and 2003, are used to perform a <svg height="15.2296pt" style="vertical-align:-3.6382pt" version="1.1" viewbox="-0.0498162 -11.5914 12.6404 15.2296" width="12.6404pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g><g transform="matrix(.0091,0,0,-0.0091,7.568,-5.741)"></path></g></svg> test to validate the current quantum electrodynamics (QED) theory and search for possible deviations with the direct contact term annihilation. By observing a deviation from the QED predictions on the total cross section of the <span><svg height="14.2262pt" style="vertical-align:-3.429501pt" version="1.1" viewbox="-0.0498162 -10.7967 44.732 14.2262" width="44.732pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-102"></use></g><g transform="matrix(.0091,0,0,-0.0091,5.382,-5.741)"><use xlink:href="#g54-36"></use></g><g transform="matrix(.013,0,0,-0.013,11.461,0)"><use xlink:href="#g113-102"></use></g><g transform="matrix(.0091,0,0,-0.0091,16.844,-5.741)"><use xlink:href="#g54-33"></use></g><g transform="matrix(.013,0,0,-0.013,26.554,0)"><use xlink:href="#g117-149"></use></g><g transform="matrix(.013,0,0,-0.013,32.33,0)"><use xlink:href="#g117-148"></use></g></svg><span></span><svg height="14.2262pt" style="vertical-align:-3.429501pt" version="1.1" viewbox="48.3921838 -10.7967 28.781 14.2262" width="28.781pt"
1989年至2003年间,VENUS、TOPAS、OPAL、DELPHI、ALEPH和L3合作小组对反应总截面的测量结果被用来验证当前的量子电动力学(QED)理论,并寻找直接接触项湮灭的可能偏差。通过观察 GeV 以上反应总截面与 QED 预测的偏差,按照维度 6 有效理论引入了非 QED 直接接触项来解释这种偏差。在非 QED 直接接触项中,包含了一个阈值能量尺度,并解释了直接接触项中的有限相互作用长度,以及湮灭区域中电子的大小。总截面的实验数据通过测试与 QED 截面进行比较,得出最佳拟合值为 GeV,对应于(厘米)的有限相互作用长度。在直接接触项湮灭中,这个相互作用长度是电子大小的量度。通过综合上述合作的所有数据结果,我们在高区域的统计数据至少是每个实验的 2 到 3 倍。因此,与之前的测量相比,我们的测量精度是最高的。
{"title":"Hint for a Minimal Interaction Length in Annihilation in Total Cross Section of Center-of-Mass Energies 55-207 GeV","authors":"Yutao Chen, Minghui Liu, Jürgen Ulbricht","doi":"10.1155/2024/9755683","DOIUrl":"https://doi.org/10.1155/2024/9755683","url":null,"abstract":"The measurements of the total cross section of the <span><svg height=\"14.2262pt\" style=\"vertical-align:-3.429501pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.7967 44.732 14.2262\" width=\"44.732pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-102\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,5.382,-5.741)\"><use xlink:href=\"#g54-36\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.461,0)\"><use xlink:href=\"#g113-102\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,16.844,-5.741)\"><use xlink:href=\"#g54-33\"></use></g><g transform=\"matrix(.013,0,0,-0.013,26.554,0)\"><use xlink:href=\"#g117-149\"></use></g><g transform=\"matrix(.013,0,0,-0.013,32.33,0)\"><use xlink:href=\"#g117-148\"></use></g></svg><span></span><svg height=\"14.2262pt\" style=\"vertical-align:-3.429501pt\" version=\"1.1\" viewbox=\"48.3921838 -10.7967 28.781 14.2262\" width=\"28.781pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,48.442,0)\"><use xlink:href=\"#g113-225\"></use></g><g transform=\"matrix(.013,0,0,-0.013,54.958,0)\"><use xlink:href=\"#g113-225\"></use></g><g transform=\"matrix(.013,0,0,-0.013,61.474,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,65.972,0)\"><use xlink:href=\"#g113-225\"></use></g><g transform=\"matrix(.013,0,0,-0.013,72.488,0)\"></path></g></svg></span> reaction from the VENUS, TOPAS, OPAL, DELPHI, ALEPH, and L3 collaborations, collected between 1989 and 2003, are used to perform a <svg height=\"15.2296pt\" style=\"vertical-align:-3.6382pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 12.6404 15.2296\" width=\"12.6404pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,7.568,-5.741)\"></path></g></svg> test to validate the current quantum electrodynamics (QED) theory and search for possible deviations with the direct contact term annihilation. By observing a deviation from the QED predictions on the total cross section of the <span><svg height=\"14.2262pt\" style=\"vertical-align:-3.429501pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.7967 44.732 14.2262\" width=\"44.732pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-102\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,5.382,-5.741)\"><use xlink:href=\"#g54-36\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.461,0)\"><use xlink:href=\"#g113-102\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,16.844,-5.741)\"><use xlink:href=\"#g54-33\"></use></g><g transform=\"matrix(.013,0,0,-0.013,26.554,0)\"><use xlink:href=\"#g117-149\"></use></g><g transform=\"matrix(.013,0,0,-0.013,32.33,0)\"><use xlink:href=\"#g117-148\"></use></g></svg><span></span><svg height=\"14.2262pt\" style=\"vertical-align:-3.429501pt\" version=\"1.1\" viewbox=\"48.3921838 -10.7967 28.781 14.2262\" width=\"28.781pt\"","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"40 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140585451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The analytical exact iteration method (AEIM) has been widely used to calculate -dimensional radial Schrodinger equation with medium-modified form of Cornell potential and is generalized to the finite value of magnetic field (eB) with quasiparticle approach in hot quantum chromodynamics (QCD) medium. In -dimensional space, the energy eigenvalues have been calculated for any states (,). These results have been used to study the properties of quarkonium states (i.e, the binding energy and mass spectra, dissociation temperature, and thermodynamical properties in the -dimensional space). We have determined the binding energy of the ground states of quarkonium with magnetic field and dimensionality number. We have also determined the effects of magnetic field and dimensionality number on mass spectra for ground states of quarkonia. But the main result is quite noticeable for the values of dissociation temperature in terms of magnetic field and dimensionality number for ground states of quarkonia after using the criteria of dissociation energy. At last, we have also calculated the thermodynamical properties of QGP (i.e., pressure, energy density, and speed of sound) using the parameter eB with ideal equation of states (EoS). A preprint has previously been published (Solanki et al., 2023).
{"title":"Dissociation of and Using Dissociation Energy Criteria in -Dimensional Space","authors":"Siddhartha Solanki, Manohar Lal, Vineet Kumar Agotiya","doi":"10.1155/2024/1045067","DOIUrl":"https://doi.org/10.1155/2024/1045067","url":null,"abstract":"The analytical exact iteration method (AEIM) has been widely used to calculate <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 11.0475 8.8423\" width=\"11.0475pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-79\"></use></g></svg>-</span>dimensional radial Schrodinger equation with medium-modified form of Cornell potential and is generalized to the finite value of magnetic field (eB) with quasiparticle approach in hot quantum chromodynamics (QCD) medium. In <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 11.0475 8.8423\" width=\"11.0475pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-79\"></use></g></svg>-</span>dimensional space, the energy eigenvalues have been calculated for any states (<span><svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 6.6501 6.1673\" width=\"6.6501pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>,</span> <span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 3.60972 9.49473\" width=\"3.60972pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>).</span> These results have been used to study the properties of quarkonium states (i.e, the binding energy and mass spectra, dissociation temperature, and thermodynamical properties in the <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 11.0475 8.8423\" width=\"11.0475pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-79\"></use></g></svg>-</span>dimensional space). We have determined the binding energy of the ground states of quarkonium with magnetic field and dimensionality number. We have also determined the effects of magnetic field and dimensionality number on mass spectra for ground states of quarkonia. But the main result is quite noticeable for the values of dissociation temperature in terms of magnetic field and dimensionality number for ground states of quarkonia after using the criteria of dissociation energy. At last, we have also calculated the thermodynamical properties of QGP (i.e., pressure, energy density, and speed of sound) using the parameter eB with ideal equation of states (EoS). A preprint has previously been published (Solanki et al., 2023).","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"40 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140585261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The paper is devoted to the study of cosmological models with time-varying cosmological term (<span><svg height="8.68572pt" style="vertical-align:-0.0498209pt" version="1.1" viewbox="-0.0498162 -8.6359 9.05107 8.68572" width="9.05107pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-140"></use></g></svg>)</span> in the presence of creation field in the framework of Bianchi type III space-time. To obtain deterministic model of the universe, we have assumed <span><svg height="13.7421pt" style="vertical-align:-2.1507pt" version="1.1" viewbox="-0.0498162 -11.5914 23.294 13.7421" width="23.294pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-140"></use></g><g transform="matrix(.013,0,0,-0.013,12.543,0)"></path></g></svg><span></span><svg height="13.7421pt" style="vertical-align:-2.1507pt" version="1.1" viewbox="26.8761838 -11.5914 11.596 13.7421" width="11.596pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,26.926,0)"></path></g><g transform="matrix(.013,0,0,-0.013,33.166,0)"></path></g></svg><span></span><span><svg height="13.7421pt" style="vertical-align:-2.1507pt" version="1.1" viewbox="38.4771838 -11.5914 13.347 13.7421" width="13.347pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,38.527,0)"></path></g><g transform="matrix(.0091,0,0,-0.0091,46.678,-5.741)"></path></g></svg>,</span></span> where <svg height="8.8423pt" style="vertical-align:-0.2064009pt" version="1.1" viewbox="-0.0498162 -8.6359 8.28119 8.8423" width="8.28119pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-83"></use></g></svg> is the scale factor, for steady state cosmology and creation field, and shear (<span><svg height="6.34998pt" style="vertical-align:-0.2063899pt" version="1.1" viewbox="-0.0498162 -6.14359 7.47218 6.34998" width="7.47218pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g></svg>)</span> is proportion to expansion (<span><svg height="9.49473pt" style="vertical-align:-0.2063999pt" version="1.1" viewbox="-0.0498162 -9.28833 6.59789 9.49473" width="6.59789pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g></svg>)</span> which leads to <span><svg height="10.1628pt" style="vertical-align:-0.2064095pt" version="1.1" viewbox="-0.0498162 -9.95639 19.076 10.1628" width="19.076pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g><g transform="matrix(.013,0,0,-0.013,11.445,0)"></path></g></svg><span>
{"title":"Creation Field Cosmological Model with Variable Cosmological Term () in Bianchi Type III Space-Time","authors":"Raj Bali, Seema Saraf","doi":"10.1155/2024/5901224","DOIUrl":"https://doi.org/10.1155/2024/5901224","url":null,"abstract":"The paper is devoted to the study of cosmological models with time-varying cosmological term (<span><svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.05107 8.68572\" width=\"9.05107pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-140\"></use></g></svg>)</span> in the presence of creation field in the framework of Bianchi type III space-time. To obtain deterministic model of the universe, we have assumed <span><svg height=\"13.7421pt\" style=\"vertical-align:-2.1507pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 23.294 13.7421\" width=\"23.294pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-140\"></use></g><g transform=\"matrix(.013,0,0,-0.013,12.543,0)\"></path></g></svg><span></span><svg height=\"13.7421pt\" style=\"vertical-align:-2.1507pt\" version=\"1.1\" viewbox=\"26.8761838 -11.5914 11.596 13.7421\" width=\"11.596pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,26.926,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,33.166,0)\"></path></g></svg><span></span><span><svg height=\"13.7421pt\" style=\"vertical-align:-2.1507pt\" version=\"1.1\" viewbox=\"38.4771838 -11.5914 13.347 13.7421\" width=\"13.347pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,38.527,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,46.678,-5.741)\"></path></g></svg>,</span></span> where <svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 8.28119 8.8423\" width=\"8.28119pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g></svg> is the scale factor, for steady state cosmology and creation field, and shear (<span><svg height=\"6.34998pt\" style=\"vertical-align:-0.2063899pt\" version=\"1.1\" viewbox=\"-0.0498162 -6.14359 7.47218 6.34998\" width=\"7.47218pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>)</span> is proportion to expansion (<span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 6.59789 9.49473\" width=\"6.59789pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>)</span> which leads to <span><svg height=\"10.1628pt\" style=\"vertical-align:-0.2064095pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.95639 19.076 10.1628\" width=\"19.076pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,11.445,0)\"></path></g></svg><span>","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"63 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140585545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tariq Mahmood, Jumanah Ahmed Darwish, Talab Hussain, Maqsood Ahmed, Rehan Ahmad Khan Sherwani
In this study, we solved the Schrödinger wave equation by using effective potential in an artificial neural network (ANN) for the mass spectrum of different charmonium states, including ,,, and . The ANN approach provides an efficient, more general, and continuous solution-approximating strategy, thus eliminating the possibility of skipping any region of interest in mass spectroscopy. The close consistency of ANN results with the already-reported results from numerical and theoretical approaches and experimental ones shows the reliability and accuracy of the ANN approach.
{"title":"Solving Schrödinger Wave Equation for the Charmonium Spectrum Using Artificial Neural Networks","authors":"Tariq Mahmood, Jumanah Ahmed Darwish, Talab Hussain, Maqsood Ahmed, Rehan Ahmad Khan Sherwani","doi":"10.1155/2024/5195790","DOIUrl":"https://doi.org/10.1155/2024/5195790","url":null,"abstract":"In this study, we solved the Schrödinger wave equation by using effective potential in an artificial neural network (ANN) for the mass spectrum of different charmonium states, including <span><svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 10.4717 9.39034\" width=\"10.4717pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,6.097,3.132)\"></path></g></svg>,</span> <span><svg height=\"10.2124pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -6.78297 12.9928 10.2124\" width=\"12.9928pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,7.917,3.132)\"></path></g></svg>,</span> <span><svg height=\"9.59912pt\" style=\"vertical-align:-3.63821pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 12.0532 9.59912\" width=\"12.0532pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,6.981,3.132)\"><use xlink:href=\"#g50-51\"></use></g></svg>,</span> and <span><svg height=\"9.59912pt\" style=\"vertical-align:-3.63821pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 14.2285 9.59912\" width=\"14.2285pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,2.175,0)\"><use xlink:href=\"#g113-244\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,9.156,3.132)\"></path></g></svg>.</span> The ANN approach provides an efficient, more general, and continuous solution-approximating strategy, thus eliminating the possibility of skipping any region of interest in mass spectroscopy. The close consistency of ANN results with the already-reported results from numerical and theoretical approaches and experimental ones shows the reliability and accuracy of the ANN approach.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"43 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140585711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jia-Yu Chen, Mai-Ying Duan, Fu-Hu Liu, Khusniddin K. Olimov
We study the transverse momentum (<span><svg height="10.2124pt" style="vertical-align:-3.42943pt" version="1.1" viewbox="-0.0498162 -6.78297 13.9009 10.2124" width="13.9009pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g><g transform="matrix(.0091,0,0,-0.0091,7.384,3.132)"></path></g></svg>)</span> spectra of neutral pions and identified charged hadrons produced in proton–proton (pp), deuteron–gold (d–Au), and gold–gold (Au–Au) collisions at the center of mass energy <span><svg height="13.1484pt" style="vertical-align:-4.16998pt" version="1.1" viewbox="-0.0498162 -8.97842 40.131 13.1484" width="40.131pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,1.262)"></path></g><rect height="0.65243" width="18.8994" x="9.96925" y="-8.27617"></rect><g transform="matrix(.013,0,0,-0.013,9.969,0)"></path></g><g transform="matrix(.0091,0,0,-0.0091,14.779,3.132)"></path></g><g transform="matrix(.0091,0,0,-0.0091,21.54,3.132)"><use xlink:href="#g190-79"></use></g><g transform="matrix(.013,0,0,-0.013,32.5,0)"></path></g></svg><span></span><svg height="13.1484pt" style="vertical-align:-4.16998pt" version="1.1" viewbox="43.713183799999996 -8.97842 18.919 13.1484" width="18.919pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,43.763,0)"></path></g><g transform="matrix(.013,0,0,-0.013,50.003,0)"></path></g><g transform="matrix(.013,0,0,-0.013,56.243,0)"><use xlink:href="#g113-49"></use></g></svg></span> GeV. The study is made in the framework of a multisource thermal model used in the partonic level. It is assumed that the contribution to the <span><svg height="10.2124pt" style="vertical-align:-3.42943pt" version="1.1" viewbox="-0.0498162 -6.78297 13.9009 10.2124" width="13.9009pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-113"></use></g><g transform="matrix(.0091,0,0,-0.0091,7.384,3.132)"><use xlink:href="#g50-85"></use></g></svg>-</span>value of any hadron comes from two or three partons with an isotropic distribution of the azimuthal angle. The contribution of each parton to the <span><svg height="10.2124pt" style="vertical-align:-3.42943pt" version="1.1" viewbox="-0.0498162 -6.78297 13.9009 10.2124" width="13.9009pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-113"></use></g><g transform="matrix(.0091,0,0,-0.0091,7.384,3.132)"><use xlink:href="#g50-85"></use></g></svg>-</span>value of a given hadron is assumed to obey any one of the standard (Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein) distributions with the kinetic freeze-out temperature and average transverse flow velocity. The <svg height="10.2124pt" style="vertical-align:-3.42943pt"
我们研究了质心能量为 GeV 的质子-质子(pp)、氘核-金(d-Au)和金-金(Au-Au)对撞中产生的中性粒子和已识别带电强子的横动量()谱。研究是在部分子水平使用的多源热模型框架内进行的。假设任何强子的-值都来自方位角各向同性分布的两个或三个粒子。每个粒子对给定强子-值的贡献被假定为服从任何一种标准(麦克斯韦-玻尔兹曼分布、费米-狄拉克分布和玻色-爱因斯坦分布),具有动力学冻结温度和平均横向流动速度。终态强子的光谱可以通过两个或三个分量的叠加来拟合。我们用蒙特卡罗方法得到的结果来拟合 PHENIX 和 STAR 合作组织的实验结果。本工作的结果可作为其他实验和模拟研究的合适参考基线。
{"title":"Extracting Kinetic Freeze-Out Properties in High-Energy Collisions Using a Multisource Thermal Model","authors":"Jia-Yu Chen, Mai-Ying Duan, Fu-Hu Liu, Khusniddin K. Olimov","doi":"10.1155/2024/9938669","DOIUrl":"https://doi.org/10.1155/2024/9938669","url":null,"abstract":"We study the transverse momentum (<span><svg height=\"10.2124pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -6.78297 13.9009 10.2124\" width=\"13.9009pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,7.384,3.132)\"></path></g></svg>)</span> spectra of neutral pions and identified charged hadrons produced in proton–proton (pp), deuteron–gold (d–Au), and gold–gold (Au–Au) collisions at the center of mass energy <span><svg height=\"13.1484pt\" style=\"vertical-align:-4.16998pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.97842 40.131 13.1484\" width=\"40.131pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,1.262)\"></path></g><rect height=\"0.65243\" width=\"18.8994\" x=\"9.96925\" y=\"-8.27617\"></rect><g transform=\"matrix(.013,0,0,-0.013,9.969,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,14.779,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,21.54,3.132)\"><use xlink:href=\"#g190-79\"></use></g><g transform=\"matrix(.013,0,0,-0.013,32.5,0)\"></path></g></svg><span></span><svg height=\"13.1484pt\" style=\"vertical-align:-4.16998pt\" version=\"1.1\" viewbox=\"43.713183799999996 -8.97842 18.919 13.1484\" width=\"18.919pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,43.763,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,50.003,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,56.243,0)\"><use xlink:href=\"#g113-49\"></use></g></svg></span> GeV. The study is made in the framework of a multisource thermal model used in the partonic level. It is assumed that the contribution to the <span><svg height=\"10.2124pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -6.78297 13.9009 10.2124\" width=\"13.9009pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-113\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,7.384,3.132)\"><use xlink:href=\"#g50-85\"></use></g></svg>-</span>value of any hadron comes from two or three partons with an isotropic distribution of the azimuthal angle. The contribution of each parton to the <span><svg height=\"10.2124pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -6.78297 13.9009 10.2124\" width=\"13.9009pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-113\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,7.384,3.132)\"><use xlink:href=\"#g50-85\"></use></g></svg>-</span>value of a given hadron is assumed to obey any one of the standard (Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein) distributions with the kinetic freeze-out temperature and average transverse flow velocity. The <svg height=\"10.2124pt\" style=\"vertical-align:-3.42943pt\"","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"10 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140298121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We investigate wormhole solutions using the modified gravity model <span><svg height="12.7178pt" style="vertical-align:-3.42947pt" version="1.1" viewbox="-0.0498162 -9.28833 24.939 12.7178" width="24.939pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-103"></use></g><g transform="matrix(.013,0,0,-0.013,8.352,0)"><use xlink:href="#g113-41"></use></g><g transform="matrix(.013,0,0,-0.013,12.85,0)"><use xlink:href="#g113-82"></use></g><g transform="matrix(.013,0,0,-0.013,21.975,0)"><use xlink:href="#g113-45"></use></g></svg><span></span><svg height="12.7178pt" style="vertical-align:-3.42947pt" version="1.1" viewbox="27.0681838 -9.28833 13.015 12.7178" width="13.015pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,27.118,0)"><use xlink:href="#g113-85"></use></g><g transform="matrix(.013,0,0,-0.013,35.404,0)"><use xlink:href="#g113-42"></use></g></svg></span> with viscosity and aim to find a solution for the existence of wormholes mathematically without violating the energy conditions. We show that there is no need to define a wormhole from exotic matter and analyze the equations with numerical analysis to establish weak energy conditions. In the numerical analysis, we found that the appropriate values of the parameters can maintain the weak energy conditions without the need for exotic matter. Adjusting the parameters of the model can increase or decrease the rate of positive energy density or radial and tangential pressures. According to the numerical analysis conducted in this paper, the weak energy conditions are established in the whole space if <span><svg height="8.98582pt" style="vertical-align:-0.6370001pt" version="1.1" viewbox="-0.0498162 -8.34882 18.648 8.98582" width="18.648pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g><g transform="matrix(.013,0,0,-0.013,11.017,0)"></path></g></svg><span></span><svg height="8.98582pt" style="vertical-align:-0.6370001pt" version="1.1" viewbox="22.230183800000002 -8.34882 6.418 8.98582" width="6.418pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,22.28,0)"></path></g></svg></span> and <span><svg height="12.7178pt" style="vertical-align:-3.42947pt" version="1.1" viewbox="-0.0498162 -9.28833 39.187 12.7178" width="39.187pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g><g transform="matrix(.013,0,0,-0.013,6.24,0)"></path></g><g transform="matrix(.013,0,0,-0.013,12.48,0)"></path></g><g transform="matrix(.013,0,0,-0.013,15.444,0)"></path></g><g transform="matrix(.013,0,0,-0.013,21.684,0)"></path></g><g transform="matrix(.013,0,0,-0.013,31.556,0)"><use xlink:href="#g117-91"></use></g></svg><span></span><svg
{"title":"Modified Gravity Model and Wormhole Solution","authors":"S. Davood Sadatian, S. Mohamad Reza Hosseini","doi":"10.1155/2024/3717418","DOIUrl":"https://doi.org/10.1155/2024/3717418","url":null,"abstract":"We investigate wormhole solutions using the modified gravity model <span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 24.939 12.7178\" width=\"24.939pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-103\"></use></g><g transform=\"matrix(.013,0,0,-0.013,8.352,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,12.85,0)\"><use xlink:href=\"#g113-82\"></use></g><g transform=\"matrix(.013,0,0,-0.013,21.975,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"27.0681838 -9.28833 13.015 12.7178\" width=\"13.015pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,27.118,0)\"><use xlink:href=\"#g113-85\"></use></g><g transform=\"matrix(.013,0,0,-0.013,35.404,0)\"><use xlink:href=\"#g113-42\"></use></g></svg></span> with viscosity and aim to find a solution for the existence of wormholes mathematically without violating the energy conditions. We show that there is no need to define a wormhole from exotic matter and analyze the equations with numerical analysis to establish weak energy conditions. In the numerical analysis, we found that the appropriate values of the parameters can maintain the weak energy conditions without the need for exotic matter. Adjusting the parameters of the model can increase or decrease the rate of positive energy density or radial and tangential pressures. According to the numerical analysis conducted in this paper, the weak energy conditions are established in the whole space if <span><svg height=\"8.98582pt\" style=\"vertical-align:-0.6370001pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.34882 18.648 8.98582\" width=\"18.648pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,11.017,0)\"></path></g></svg><span></span><svg height=\"8.98582pt\" style=\"vertical-align:-0.6370001pt\" version=\"1.1\" viewbox=\"22.230183800000002 -8.34882 6.418 8.98582\" width=\"6.418pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,22.28,0)\"></path></g></svg></span> and <span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 39.187 12.7178\" width=\"39.187pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,6.24,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,12.48,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,15.444,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,21.684,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,31.556,0)\"><use xlink:href=\"#g117-91\"></use></g></svg><span></span><svg","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140105939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, we investigated the impact of a topological defect () on the properties of heavy quarkonia using the extended Cornell potential. We solved the fractional radial Schrödinger equation (SE) using the extended Nikiforov-Uvarov (ENU) method to obtain the eigenvalues of energy, which allowed us to calculate the masses of charmonium and bottomonium. One significant observation was the splitting between nP and nD states, which attributed to the presence of the topological defect. We discovered that the excited states were divided into components corresponding to , indicating that the gravity field induced by the topological defect interacts with energy levels like the Zeeman effect caused by a magnetic field. Additionally, we derived the wave function and calculated the root-mean radii for charmonium and bottomonium. A comparison with the classical models was performed, resulting in better results being obtained. Furthermore, we investigated the thermodynamic properties of charmonium and bottomonium, determining quantities such as energy, partition function, free energy, mean energy, specific heat, and entropy for P-states. The obtained results were found to be consistent with experimental data and previous works. In conclusion, the fractional model used in this work proved an essential role in understanding the various properties and behaviors of heavy quarkonia in the presence of topological defects.
在这项研究中,我们利用扩展康奈尔势研究了拓扑缺陷()对重夸克态性质的影响。我们用扩展的尼基福罗夫-乌瓦洛夫(ENU)方法求解了分数径向薛定谔方程(SE),得到了能量特征值,从而计算出了粲和底粲的质量。一个重要的观察结果是 nP 和 nD 状态之间的分裂,这归因于拓扑缺陷的存在。此外,我们还推导出了粲和底粲的波函数,并计算了它们的均方根半径。通过与经典模型的比较,我们获得了更好的结果。此外,我们还研究了粲和底铵的热力学性质,确定了 P 态的能量、分配函数、自由能、平均能、比热和熵等量。所得结果与实验数据和以前的工作相一致。总之,这项工作中使用的分数模型在理解存在拓扑缺陷的重夸克态的各种性质和行为方面发挥了重要作用。
{"title":"Properties and Behaviors of Heavy Quarkonia: Insights through Fractional Model and Topological Defects","authors":"M. Abu-shady, H. M. Fath-Allah","doi":"10.1155/2024/2730568","DOIUrl":"https://doi.org/10.1155/2024/2730568","url":null,"abstract":"In this study, we investigated the impact of a topological defect (<span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 7.30254 9.49473\" width=\"7.30254pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>)</span> on the properties of heavy quarkonia using the extended Cornell potential. We solved the fractional radial Schrödinger equation (SE) using the extended Nikiforov-Uvarov (ENU) method to obtain the eigenvalues of energy, which allowed us to calculate the masses of charmonium and bottomonium. One significant observation was the splitting between nP and nD states, which attributed to the presence of the topological defect. We discovered that the excited states were divided into components corresponding to <span><svg height=\"9.63826pt\" style=\"vertical-align:-0.3499298pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 20.275 9.63826\" width=\"20.275pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,6.24,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,12.644,0)\"></path></g></svg><span></span><span><svg height=\"9.63826pt\" style=\"vertical-align:-0.3499298pt\" version=\"1.1\" viewbox=\"23.1301838 -9.28833 6.427 9.63826\" width=\"6.427pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,23.18,0)\"></path></g></svg>,</span></span> indicating that the gravity field induced by the topological defect interacts with energy levels like the Zeeman effect caused by a magnetic field. Additionally, we derived the wave function and calculated the root-mean radii for charmonium and bottomonium. A comparison with the classical models was performed, resulting in better results being obtained. Furthermore, we investigated the thermodynamic properties of charmonium and bottomonium, determining quantities such as energy, partition function, free energy, mean energy, specific heat, and entropy for P-states. The obtained results were found to be consistent with experimental data and previous works. In conclusion, the fractional model used in this work proved an essential role in understanding the various properties and behaviors of heavy quarkonia in the presence of topological defects.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"13 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140018623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yogesh Kumar, Poonam Jain, Pargin Bangotra, Vinod Kumar, D. V. Singh, S. K. Rajouria
The phase diagram of quantum chromodynamics (QCD) and its associated thermodynamic properties of quark-gluon plasma (QGP) are studied in the presence of time-dependent magnetic field. The study plays a pivotal role in the field of cosmology, astrophysics, and heavy-ion collisions. In order to explore the structure of quark-gluon plasma to deal with the dynamics of quarks and gluons, we investigate the equation of state (EoS) not only in the environment of static magnetic field but also in the presence of time-varying magnetic fields. So, for determining the equation of state of QGP at nonzero magnetic fields, we revisited our earlier model where the effect of time-varying magnetic field was not taken into consideration. Using the phenomenological model, some appealing features are noticed depending upon the three different scales: effective mass of quark, temperature, and time-independent and time-dependent magnetic fields. Earlier the effective mass of quark was incorporated in our calculations, and in the current work, it is modified for static and time-varying magnetic fields. Thermodynamic observables including pressure, energy density, and entropy are calculated for a wide range of temperature- and time-dependent as well as time-independent magnetic fields. Finally, we claim that the EoS are highly affected in the presence of a magnetic field. Our results are notable compared to other approaches and found to be advantageous for the measurement of QGP equation of state. These crucial findings with and without time-varying magnetic field could have phenomenological implications in various sectors of high-energy physics.
{"title":"Role of Time-Varying Magnetic Field on QGP Equation of State","authors":"Yogesh Kumar, Poonam Jain, Pargin Bangotra, Vinod Kumar, D. V. Singh, S. K. Rajouria","doi":"10.1155/2024/1870528","DOIUrl":"https://doi.org/10.1155/2024/1870528","url":null,"abstract":"The phase diagram of quantum chromodynamics (QCD) and its associated thermodynamic properties of quark-gluon plasma (QGP) are studied in the presence of time-dependent magnetic field. The study plays a pivotal role in the field of cosmology, astrophysics, and heavy-ion collisions. In order to explore the structure of quark-gluon plasma to deal with the dynamics of quarks and gluons, we investigate the equation of state (EoS) not only in the environment of static magnetic field but also in the presence of time-varying magnetic fields. So, for determining the equation of state of QGP at nonzero magnetic fields, we revisited our earlier model where the effect of time-varying magnetic field was not taken into consideration. Using the phenomenological model, some appealing features are noticed depending upon the three different scales: effective mass of quark, temperature, and time-independent and time-dependent magnetic fields. Earlier the effective mass of quark was incorporated in our calculations, and in the current work, it is modified for static and time-varying magnetic fields. Thermodynamic observables including pressure, energy density, and entropy are calculated for a wide range of temperature- and time-dependent as well as time-independent magnetic fields. Finally, we claim that the EoS are highly affected in the presence of a magnetic field. Our results are notable compared to other approaches and found to be advantageous for the measurement of QGP equation of state. These crucial findings with and without time-varying magnetic field could have phenomenological implications in various sectors of high-energy physics.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"209 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139761732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}