首页 > 最新文献

Advances in High Energy Physics最新文献

英文 中文
Statistical Issues on the Neutrino Mass Hierarchy with 中微子质量层次的统计问题与
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-05-14 DOI: 10.1155/2024/9339959
F. Sawy, L. Stanco
The neutrino mass hierarchy determination (<svg height="6.20643pt" style="vertical-align:-0.2585797pt" version="1.1" viewbox="-0.0498162 -5.94785 6.02377 6.20643" width="6.02377pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g></svg> MHD) is one of the main goals of the major current and future neutrino experiments. The statistical analysis usually proceeds from a standard method, a single-dimensional estimator <svg height="15.2296pt" style="vertical-align:-3.6382pt" version="1.1" viewbox="-0.0498162 -11.5914 59.3592 15.2296" width="59.3592pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g><g transform="matrix(.013,0,0,-0.013,4.498,0)"></path></g><g transform="matrix(.013,0,0,-0.013,10.738,0)"></path></g><g transform="matrix(.013,0,0,-0.013,23.234,0)"></path></g><g transform="matrix(.013,0,0,-0.013,33.771,0)"><use xlink:href="#g113-133"></use></g><g transform="matrix(.013,0,0,-0.013,42.098,0)"><use xlink:href="#g113-244"></use></g><g transform="matrix(.0091,0,0,-0.0091,49.666,-5.741)"><use xlink:href="#g50-51"></use></g><g transform="matrix(.013,0,0,-0.013,54.612,0)"></path></g></svg> that shows some drawbacks and concerns, together with a debatable strategy. The drawbacks and considerations of the standard method will be explained through the following three main issues. The first issue corresponds to the limited power of the standard method. The <svg height="15.2296pt" style="vertical-align:-3.6382pt" version="1.1" viewbox="-0.0498162 -11.5914 21.0047 15.2296" width="21.0047pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-133"></use></g><g transform="matrix(.013,0,0,-0.013,8.327,0)"><use xlink:href="#g113-244"></use></g><g transform="matrix(.0091,0,0,-0.0091,15.895,-5.741)"><use xlink:href="#g50-51"></use></g></svg> estimator provides us with different results when different simulation procedures were used. Regarding the second issue, when <svg height="16.9233pt" style="vertical-align:-5.3319pt" version="1.1" viewbox="-0.0498162 -11.5914 43.1456 16.9233" width="43.1456pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-244"></use></g><g transform="matrix(.0091,0,0,-0.0091,7.568,-5.741)"><use xlink:href="#g50-51"></use></g><g transform="matrix(.0091,0,0,-0.0091,6.981,3.784)"></path></g><g transform="matrix(.0091,0,0,-0.0091,14.57,3.784)"></path></g><g transform="matrix(.0091,0,0,-0.0091,17.073,3.784)"></path></g><g transform="matrix(.0091,0,0,-0.0091,22.198,3.784)"></path></g><g transform="matrix(.0091,0,0,-0.0091,25.456,3.784)"></path></g><g transform="matrix(.0091,0,0,-0.0091,32.218,3.784)"></path></g><g transform="matrix(.0091,0,0,-0.0091,39.24,3.784)"></path></g></svg> and <svg heig
中微子质量层次测定(MHD)是当前和未来主要中微子实验的主要目标之一。统计分析通常采用一种标准方法,即一种单维度估算方法,这种方法存在一些缺陷和问题,其策略也值得商榷。标准方法的缺点和问题将通过以下三个主要问题来解释。第一个问题是标准方法的能力有限。在使用不同的模拟程序时,估算器会提供不同的结果。关于第二个问题,当和在二维地图中绘制时,它们之间的强正相关性表现为二维变量,而不是单维估计值。两个假设的分布重叠导致实验灵敏度降低。第三个问题与标准方法的稳健性有关。当使用不同的程序(一维或二维估计器)获得 JUNO 的灵敏度时,实验灵敏度会随着大气质量(输入参数)的不同值而变化。我们计算了大气质量随输入参数值(......)的摆动。使用标准方法计算的 MH 值(Ⅳ)与参数值(Ⅴ)密切相关。因此,实验灵敏度取决于大气质量的精度。对标准方法的评估证实了其缺点。
{"title":"Statistical Issues on the Neutrino Mass Hierarchy with","authors":"F. Sawy, L. Stanco","doi":"10.1155/2024/9339959","DOIUrl":"https://doi.org/10.1155/2024/9339959","url":null,"abstract":"The neutrino mass hierarchy determination (&lt;svg height=\"6.20643pt\" style=\"vertical-align:-0.2585797pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.94785 6.02377 6.20643\" width=\"6.02377pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt; MHD) is one of the main goals of the major current and future neutrino experiments. The statistical analysis usually proceeds from a standard method, a single-dimensional estimator &lt;svg height=\"15.2296pt\" style=\"vertical-align:-3.6382pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 59.3592 15.2296\" width=\"59.3592pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,4.498,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,10.738,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,23.234,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,33.771,0)\"&gt;&lt;use xlink:href=\"#g113-133\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,42.098,0)\"&gt;&lt;use xlink:href=\"#g113-244\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,49.666,-5.741)\"&gt;&lt;use xlink:href=\"#g50-51\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,54.612,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt; that shows some drawbacks and concerns, together with a debatable strategy. The drawbacks and considerations of the standard method will be explained through the following three main issues. The first issue corresponds to the limited power of the standard method. The &lt;svg height=\"15.2296pt\" style=\"vertical-align:-3.6382pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 21.0047 15.2296\" width=\"21.0047pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;use xlink:href=\"#g113-133\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,8.327,0)\"&gt;&lt;use xlink:href=\"#g113-244\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,15.895,-5.741)\"&gt;&lt;use xlink:href=\"#g50-51\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt; estimator provides us with different results when different simulation procedures were used. Regarding the second issue, when &lt;svg height=\"16.9233pt\" style=\"vertical-align:-5.3319pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 43.1456 16.9233\" width=\"43.1456pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;use xlink:href=\"#g113-244\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,7.568,-5.741)\"&gt;&lt;use xlink:href=\"#g50-51\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,6.981,3.784)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,14.57,3.784)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,17.073,3.784)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,22.198,3.784)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,25.456,3.784)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,32.218,3.784)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,39.24,3.784)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt; and &lt;svg heig","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"36 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140940173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of the Energy Eigenvalues of the Varshni-Hellmann Potential 确定瓦尔什尼-赫尔曼势的能量特征值
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-05-10 DOI: 10.1155/2024/5584682
N. Tazimi
In this paper, we solve the bound state problem for the Varshni-Hellmann potential via a useful technique. In our technique, we obtain the bound state solution of the Schrödinger equation for the Varshni-Hellmann potential via ansatz method. We obtain the energy eigenvalues and the corresponding eigenfunctions. Also, the behavior of the energy spectra for both the ground and the excited state of the two body systems is illustrated graphically. The similarity of our results to the accurate numerical values is indicative of the efficiency of our technique.
在本文中,我们通过一种有用的技术解决了瓦尔什尼-赫尔曼势的边界态问题。在我们的技术中,我们通过ansatz方法得到了Varshni-Hellmann势的薛定谔方程的束缚态解。我们得到了能量特征值和相应的特征函数。此外,我们还以图形方式说明了两体系统基态和激发态的能谱行为。我们的结果与精确数值的相似性表明了我们技术的效率。
{"title":"Determination of the Energy Eigenvalues of the Varshni-Hellmann Potential","authors":"N. Tazimi","doi":"10.1155/2024/5584682","DOIUrl":"https://doi.org/10.1155/2024/5584682","url":null,"abstract":"In this paper, we solve the bound state problem for the Varshni-Hellmann potential via a useful technique. In our technique, we obtain the bound state solution of the Schrödinger equation for the Varshni-Hellmann potential via ansatz method. We obtain the energy eigenvalues and the corresponding eigenfunctions. Also, the behavior of the energy spectra for both the ground and the excited state of the two body systems is illustrated graphically. The similarity of our results to the accurate numerical values is indicative of the efficiency of our technique.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"5 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140940171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hint for a Minimal Interaction Length in Annihilation in Total Cross Section of Center-of-Mass Energies 55-207 GeV 质量中心能量 55-207 GeV 总截面湮灭中最小相互作用长度的提示
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-04-10 DOI: 10.1155/2024/9755683
Yutao Chen, Minghui Liu, Jürgen Ulbricht
The measurements of the total cross section of the <span><svg height="14.2262pt" style="vertical-align:-3.429501pt" version="1.1" viewbox="-0.0498162 -10.7967 44.732 14.2262" width="44.732pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-102"></use></g><g transform="matrix(.0091,0,0,-0.0091,5.382,-5.741)"><use xlink:href="#g54-36"></use></g><g transform="matrix(.013,0,0,-0.013,11.461,0)"><use xlink:href="#g113-102"></use></g><g transform="matrix(.0091,0,0,-0.0091,16.844,-5.741)"><use xlink:href="#g54-33"></use></g><g transform="matrix(.013,0,0,-0.013,26.554,0)"><use xlink:href="#g117-149"></use></g><g transform="matrix(.013,0,0,-0.013,32.33,0)"><use xlink:href="#g117-148"></use></g></svg><span></span><svg height="14.2262pt" style="vertical-align:-3.429501pt" version="1.1" viewbox="48.3921838 -10.7967 28.781 14.2262" width="28.781pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,48.442,0)"><use xlink:href="#g113-225"></use></g><g transform="matrix(.013,0,0,-0.013,54.958,0)"><use xlink:href="#g113-225"></use></g><g transform="matrix(.013,0,0,-0.013,61.474,0)"></path></g><g transform="matrix(.013,0,0,-0.013,65.972,0)"><use xlink:href="#g113-225"></use></g><g transform="matrix(.013,0,0,-0.013,72.488,0)"></path></g></svg></span> reaction from the VENUS, TOPAS, OPAL, DELPHI, ALEPH, and L3 collaborations, collected between 1989 and 2003, are used to perform a <svg height="15.2296pt" style="vertical-align:-3.6382pt" version="1.1" viewbox="-0.0498162 -11.5914 12.6404 15.2296" width="12.6404pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g><g transform="matrix(.0091,0,0,-0.0091,7.568,-5.741)"></path></g></svg> test to validate the current quantum electrodynamics (QED) theory and search for possible deviations with the direct contact term annihilation. By observing a deviation from the QED predictions on the total cross section of the <span><svg height="14.2262pt" style="vertical-align:-3.429501pt" version="1.1" viewbox="-0.0498162 -10.7967 44.732 14.2262" width="44.732pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-102"></use></g><g transform="matrix(.0091,0,0,-0.0091,5.382,-5.741)"><use xlink:href="#g54-36"></use></g><g transform="matrix(.013,0,0,-0.013,11.461,0)"><use xlink:href="#g113-102"></use></g><g transform="matrix(.0091,0,0,-0.0091,16.844,-5.741)"><use xlink:href="#g54-33"></use></g><g transform="matrix(.013,0,0,-0.013,26.554,0)"><use xlink:href="#g117-149"></use></g><g transform="matrix(.013,0,0,-0.013,32.33,0)"><use xlink:href="#g117-148"></use></g></svg><span></span><svg height="14.2262pt" style="vertical-align:-3.429501pt" version="1.1" viewbox="48.3921838 -10.7967 28.781 14.2262" width="28.781pt"
1989年至2003年间,VENUS、TOPAS、OPAL、DELPHI、ALEPH和L3合作小组对反应总截面的测量结果被用来验证当前的量子电动力学(QED)理论,并寻找直接接触项湮灭的可能偏差。通过观察 GeV 以上反应总截面与 QED 预测的偏差,按照维度 6 有效理论引入了非 QED 直接接触项来解释这种偏差。在非 QED 直接接触项中,包含了一个阈值能量尺度,并解释了直接接触项中的有限相互作用长度,以及湮灭区域中电子的大小。总截面的实验数据通过测试与 QED 截面进行比较,得出最佳拟合值为 GeV,对应于(厘米)的有限相互作用长度。在直接接触项湮灭中,这个相互作用长度是电子大小的量度。通过综合上述合作的所有数据结果,我们在高区域的统计数据至少是每个实验的 2 到 3 倍。因此,与之前的测量相比,我们的测量精度是最高的。
{"title":"Hint for a Minimal Interaction Length in Annihilation in Total Cross Section of Center-of-Mass Energies 55-207 GeV","authors":"Yutao Chen, Minghui Liu, Jürgen Ulbricht","doi":"10.1155/2024/9755683","DOIUrl":"https://doi.org/10.1155/2024/9755683","url":null,"abstract":"The measurements of the total cross section of the &lt;span&gt;&lt;svg height=\"14.2262pt\" style=\"vertical-align:-3.429501pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.7967 44.732 14.2262\" width=\"44.732pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;use xlink:href=\"#g113-102\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,5.382,-5.741)\"&gt;&lt;use xlink:href=\"#g54-36\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,11.461,0)\"&gt;&lt;use xlink:href=\"#g113-102\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,16.844,-5.741)\"&gt;&lt;use xlink:href=\"#g54-33\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,26.554,0)\"&gt;&lt;use xlink:href=\"#g117-149\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,32.33,0)\"&gt;&lt;use xlink:href=\"#g117-148\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span&gt;&lt;/span&gt;&lt;svg height=\"14.2262pt\" style=\"vertical-align:-3.429501pt\" version=\"1.1\" viewbox=\"48.3921838 -10.7967 28.781 14.2262\" width=\"28.781pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,48.442,0)\"&gt;&lt;use xlink:href=\"#g113-225\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,54.958,0)\"&gt;&lt;use xlink:href=\"#g113-225\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,61.474,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,65.972,0)\"&gt;&lt;use xlink:href=\"#g113-225\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,72.488,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt;&lt;/span&gt; reaction from the VENUS, TOPAS, OPAL, DELPHI, ALEPH, and L3 collaborations, collected between 1989 and 2003, are used to perform a &lt;svg height=\"15.2296pt\" style=\"vertical-align:-3.6382pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 12.6404 15.2296\" width=\"12.6404pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,7.568,-5.741)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt; test to validate the current quantum electrodynamics (QED) theory and search for possible deviations with the direct contact term annihilation. By observing a deviation from the QED predictions on the total cross section of the &lt;span&gt;&lt;svg height=\"14.2262pt\" style=\"vertical-align:-3.429501pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.7967 44.732 14.2262\" width=\"44.732pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;use xlink:href=\"#g113-102\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,5.382,-5.741)\"&gt;&lt;use xlink:href=\"#g54-36\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,11.461,0)\"&gt;&lt;use xlink:href=\"#g113-102\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,16.844,-5.741)\"&gt;&lt;use xlink:href=\"#g54-33\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,26.554,0)\"&gt;&lt;use xlink:href=\"#g117-149\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,32.33,0)\"&gt;&lt;use xlink:href=\"#g117-148\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span&gt;&lt;/span&gt;&lt;svg height=\"14.2262pt\" style=\"vertical-align:-3.429501pt\" version=\"1.1\" viewbox=\"48.3921838 -10.7967 28.781 14.2262\" width=\"28.781pt\"","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"40 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140585451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissociation of and Using Dissociation Energy Criteria in -Dimensional Space 在-维空间中解离和使用解离能标准
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-04-08 DOI: 10.1155/2024/1045067
Siddhartha Solanki, Manohar Lal, Vineet Kumar Agotiya
The analytical exact iteration method (AEIM) has been widely used to calculate -dimensional radial Schrodinger equation with medium-modified form of Cornell potential and is generalized to the finite value of magnetic field (eB) with quasiparticle approach in hot quantum chromodynamics (QCD) medium. In -dimensional space, the energy eigenvalues have been calculated for any states (, ). These results have been used to study the properties of quarkonium states (i.e, the binding energy and mass spectra, dissociation temperature, and thermodynamical properties in the -dimensional space). We have determined the binding energy of the ground states of quarkonium with magnetic field and dimensionality number. We have also determined the effects of magnetic field and dimensionality number on mass spectra for ground states of quarkonia. But the main result is quite noticeable for the values of dissociation temperature in terms of magnetic field and dimensionality number for ground states of quarkonia after using the criteria of dissociation energy. At last, we have also calculated the thermodynamical properties of QGP (i.e., pressure, energy density, and speed of sound) using the parameter eB with ideal equation of states (EoS). A preprint has previously been published (Solanki et al., 2023).
分析精确迭代法(AEIM)已被广泛用于计算具有康奈尔势的介质修正形式的-维径向薛定谔方程,并被推广到热量子色动力学(QCD)介质中具有准粒子方法的有限磁场(eB)值。在-维空间中,计算了任何状态(, )的能量特征值。这些结果被用来研究夸克态的性质(即-维空间中的结合能和质量谱、解离温度和热力学性质)。我们测定了夸克鎓基态的结合能与磁场和维数的关系。我们还测定了磁场和维数对夸克鎓基态质谱的影响。但是,在使用解离能的标准后,主要结果是夸克鎓基态在磁场和维数方面的解离温度值非常明显。最后,我们还利用具有理想状态方程(EoS)的参数 eB 计算了 QGP 的热力学性质(即压力、能量密度和声速)。预印本已经发表(Solanki 等人,2023 年)。
{"title":"Dissociation of and Using Dissociation Energy Criteria in -Dimensional Space","authors":"Siddhartha Solanki, Manohar Lal, Vineet Kumar Agotiya","doi":"10.1155/2024/1045067","DOIUrl":"https://doi.org/10.1155/2024/1045067","url":null,"abstract":"The analytical exact iteration method (AEIM) has been widely used to calculate <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 11.0475 8.8423\" width=\"11.0475pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-79\"></use></g></svg>-</span>dimensional radial Schrodinger equation with medium-modified form of Cornell potential and is generalized to the finite value of magnetic field (eB) with quasiparticle approach in hot quantum chromodynamics (QCD) medium. In <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 11.0475 8.8423\" width=\"11.0475pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-79\"></use></g></svg>-</span>dimensional space, the energy eigenvalues have been calculated for any states (<span><svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 6.6501 6.1673\" width=\"6.6501pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>,</span> <span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 3.60972 9.49473\" width=\"3.60972pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>).</span> These results have been used to study the properties of quarkonium states (i.e, the binding energy and mass spectra, dissociation temperature, and thermodynamical properties in the <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 11.0475 8.8423\" width=\"11.0475pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-79\"></use></g></svg>-</span>dimensional space). We have determined the binding energy of the ground states of quarkonium with magnetic field and dimensionality number. We have also determined the effects of magnetic field and dimensionality number on mass spectra for ground states of quarkonia. But the main result is quite noticeable for the values of dissociation temperature in terms of magnetic field and dimensionality number for ground states of quarkonia after using the criteria of dissociation energy. At last, we have also calculated the thermodynamical properties of QGP (i.e., pressure, energy density, and speed of sound) using the parameter eB with ideal equation of states (EoS). A preprint has previously been published (Solanki et al., 2023).","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"40 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140585261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Creation Field Cosmological Model with Variable Cosmological Term () in Bianchi Type III Space-Time 比安奇 III 型时空中具有可变宇宙学项 () 的创生场宇宙学模型
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-04-05 DOI: 10.1155/2024/5901224
Raj Bali, Seema Saraf
The paper is devoted to the study of cosmological models with time-varying cosmological term (<span><svg height="8.68572pt" style="vertical-align:-0.0498209pt" version="1.1" viewbox="-0.0498162 -8.6359 9.05107 8.68572" width="9.05107pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-140"></use></g></svg>)</span> in the presence of creation field in the framework of Bianchi type III space-time. To obtain deterministic model of the universe, we have assumed <span><svg height="13.7421pt" style="vertical-align:-2.1507pt" version="1.1" viewbox="-0.0498162 -11.5914 23.294 13.7421" width="23.294pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-140"></use></g><g transform="matrix(.013,0,0,-0.013,12.543,0)"></path></g></svg><span></span><svg height="13.7421pt" style="vertical-align:-2.1507pt" version="1.1" viewbox="26.8761838 -11.5914 11.596 13.7421" width="11.596pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,26.926,0)"></path></g><g transform="matrix(.013,0,0,-0.013,33.166,0)"></path></g></svg><span></span><span><svg height="13.7421pt" style="vertical-align:-2.1507pt" version="1.1" viewbox="38.4771838 -11.5914 13.347 13.7421" width="13.347pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,38.527,0)"></path></g><g transform="matrix(.0091,0,0,-0.0091,46.678,-5.741)"></path></g></svg>,</span></span> where <svg height="8.8423pt" style="vertical-align:-0.2064009pt" version="1.1" viewbox="-0.0498162 -8.6359 8.28119 8.8423" width="8.28119pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-83"></use></g></svg> is the scale factor, for steady state cosmology and creation field, and shear (<span><svg height="6.34998pt" style="vertical-align:-0.2063899pt" version="1.1" viewbox="-0.0498162 -6.14359 7.47218 6.34998" width="7.47218pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g></svg>)</span> is proportion to expansion (<span><svg height="9.49473pt" style="vertical-align:-0.2063999pt" version="1.1" viewbox="-0.0498162 -9.28833 6.59789 9.49473" width="6.59789pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g></svg>)</span> which leads to <span><svg height="10.1628pt" style="vertical-align:-0.2064095pt" version="1.1" viewbox="-0.0498162 -9.95639 19.076 10.1628" width="19.076pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g><g transform="matrix(.013,0,0,-0.013,11.445,0)"></path></g></svg><span>
本文致力于在比安奇第三类时空框架内研究存在创生场的时变宇宙学项()的宇宙学模型。为了得到宇宙时间的结果,我们假设 。模型满足守恒方程,创生场随时间增加。本模型不存在奇点,具有粒子视界,并为暴胀情景和各向同性提供了自然解释。创生场和爱因斯坦场方程是利用最小作用原理和可变宇宙学项的拉格朗日公式推导出来的。为了说明问题,用图表显示了一些宇宙学参数的演化行为。此外,还讨论了其他物理方面的问题,如模型的加速行为。因此,该模型不仅代表了膨胀的宇宙,还代表了加速的宇宙,这与当今的观测结果相吻合。
{"title":"Creation Field Cosmological Model with Variable Cosmological Term () in Bianchi Type III Space-Time","authors":"Raj Bali, Seema Saraf","doi":"10.1155/2024/5901224","DOIUrl":"https://doi.org/10.1155/2024/5901224","url":null,"abstract":"The paper is devoted to the study of cosmological models with time-varying cosmological term (&lt;span&gt;&lt;svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.05107 8.68572\" width=\"9.05107pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;use xlink:href=\"#g113-140\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;)&lt;/span&gt; in the presence of creation field in the framework of Bianchi type III space-time. To obtain deterministic model of the universe, we have assumed &lt;span&gt;&lt;svg height=\"13.7421pt\" style=\"vertical-align:-2.1507pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 23.294 13.7421\" width=\"23.294pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;use xlink:href=\"#g113-140\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,12.543,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span&gt;&lt;/span&gt;&lt;svg height=\"13.7421pt\" style=\"vertical-align:-2.1507pt\" version=\"1.1\" viewbox=\"26.8761838 -11.5914 11.596 13.7421\" width=\"11.596pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,26.926,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,33.166,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span&gt;&lt;/span&gt;&lt;span&gt;&lt;svg height=\"13.7421pt\" style=\"vertical-align:-2.1507pt\" version=\"1.1\" viewbox=\"38.4771838 -11.5914 13.347 13.7421\" width=\"13.347pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,38.527,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,46.678,-5.741)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt;,&lt;/span&gt;&lt;/span&gt; where &lt;svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 8.28119 8.8423\" width=\"8.28119pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;use xlink:href=\"#g113-83\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt; is the scale factor, for steady state cosmology and creation field, and shear (&lt;span&gt;&lt;svg height=\"6.34998pt\" style=\"vertical-align:-0.2063899pt\" version=\"1.1\" viewbox=\"-0.0498162 -6.14359 7.47218 6.34998\" width=\"7.47218pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt;)&lt;/span&gt; is proportion to expansion (&lt;span&gt;&lt;svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 6.59789 9.49473\" width=\"6.59789pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt;)&lt;/span&gt; which leads to &lt;span&gt;&lt;svg height=\"10.1628pt\" style=\"vertical-align:-0.2064095pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.95639 19.076 10.1628\" width=\"19.076pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,11.445,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span&gt;","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"63 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140585545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solving Schrödinger Wave Equation for the Charmonium Spectrum Using Artificial Neural Networks 利用人工神经网络求解查莫能谱的薛定谔波方程
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-04-03 DOI: 10.1155/2024/5195790
Tariq Mahmood, Jumanah Ahmed Darwish, Talab Hussain, Maqsood Ahmed, Rehan Ahmad Khan Sherwani
In this study, we solved the Schrödinger wave equation by using effective potential in an artificial neural network (ANN) for the mass spectrum of different charmonium states, including , , , and . The ANN approach provides an efficient, more general, and continuous solution-approximating strategy, thus eliminating the possibility of skipping any region of interest in mass spectroscopy. The close consistency of ANN results with the already-reported results from numerical and theoretical approaches and experimental ones shows the reliability and accuracy of the ANN approach.
在这项研究中,我们利用人工神经网络(ANN)中的有效电势求解了薛定谔波方程,得到了不同粲态(包括 、 、 和 )的质谱。人工神经网络方法提供了一种高效、通用和连续的求解逼近策略,从而消除了在质谱分析中跳过任何感兴趣区域的可能性。方差网络的结果与已报道的数值和理论方法以及实验结果非常一致,这表明了方差网络方法的可靠性和准确性。
{"title":"Solving Schrödinger Wave Equation for the Charmonium Spectrum Using Artificial Neural Networks","authors":"Tariq Mahmood, Jumanah Ahmed Darwish, Talab Hussain, Maqsood Ahmed, Rehan Ahmad Khan Sherwani","doi":"10.1155/2024/5195790","DOIUrl":"https://doi.org/10.1155/2024/5195790","url":null,"abstract":"In this study, we solved the Schrödinger wave equation by using effective potential in an artificial neural network (ANN) for the mass spectrum of different charmonium states, including <span><svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 10.4717 9.39034\" width=\"10.4717pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,6.097,3.132)\"></path></g></svg>,</span> <span><svg height=\"10.2124pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -6.78297 12.9928 10.2124\" width=\"12.9928pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,7.917,3.132)\"></path></g></svg>,</span> <span><svg height=\"9.59912pt\" style=\"vertical-align:-3.63821pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 12.0532 9.59912\" width=\"12.0532pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,6.981,3.132)\"><use xlink:href=\"#g50-51\"></use></g></svg>,</span> and <span><svg height=\"9.59912pt\" style=\"vertical-align:-3.63821pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 14.2285 9.59912\" width=\"14.2285pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,2.175,0)\"><use xlink:href=\"#g113-244\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,9.156,3.132)\"></path></g></svg>.</span> The ANN approach provides an efficient, more general, and continuous solution-approximating strategy, thus eliminating the possibility of skipping any region of interest in mass spectroscopy. The close consistency of ANN results with the already-reported results from numerical and theoretical approaches and experimental ones shows the reliability and accuracy of the ANN approach.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"43 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140585711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracting Kinetic Freeze-Out Properties in High-Energy Collisions Using a Multisource Thermal Model 利用多源热模型提取高能碰撞中的动力学凝固特性
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-03-25 DOI: 10.1155/2024/9938669
Jia-Yu Chen, Mai-Ying Duan, Fu-Hu Liu, Khusniddin K. Olimov
We study the transverse momentum (<span><svg height="10.2124pt" style="vertical-align:-3.42943pt" version="1.1" viewbox="-0.0498162 -6.78297 13.9009 10.2124" width="13.9009pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g><g transform="matrix(.0091,0,0,-0.0091,7.384,3.132)"></path></g></svg>)</span> spectra of neutral pions and identified charged hadrons produced in proton–proton (pp), deuteron–gold (d–Au), and gold–gold (Au–Au) collisions at the center of mass energy <span><svg height="13.1484pt" style="vertical-align:-4.16998pt" version="1.1" viewbox="-0.0498162 -8.97842 40.131 13.1484" width="40.131pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,1.262)"></path></g><rect height="0.65243" width="18.8994" x="9.96925" y="-8.27617"></rect><g transform="matrix(.013,0,0,-0.013,9.969,0)"></path></g><g transform="matrix(.0091,0,0,-0.0091,14.779,3.132)"></path></g><g transform="matrix(.0091,0,0,-0.0091,21.54,3.132)"><use xlink:href="#g190-79"></use></g><g transform="matrix(.013,0,0,-0.013,32.5,0)"></path></g></svg><span></span><svg height="13.1484pt" style="vertical-align:-4.16998pt" version="1.1" viewbox="43.713183799999996 -8.97842 18.919 13.1484" width="18.919pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,43.763,0)"></path></g><g transform="matrix(.013,0,0,-0.013,50.003,0)"></path></g><g transform="matrix(.013,0,0,-0.013,56.243,0)"><use xlink:href="#g113-49"></use></g></svg></span> GeV. The study is made in the framework of a multisource thermal model used in the partonic level. It is assumed that the contribution to the <span><svg height="10.2124pt" style="vertical-align:-3.42943pt" version="1.1" viewbox="-0.0498162 -6.78297 13.9009 10.2124" width="13.9009pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-113"></use></g><g transform="matrix(.0091,0,0,-0.0091,7.384,3.132)"><use xlink:href="#g50-85"></use></g></svg>-</span>value of any hadron comes from two or three partons with an isotropic distribution of the azimuthal angle. The contribution of each parton to the <span><svg height="10.2124pt" style="vertical-align:-3.42943pt" version="1.1" viewbox="-0.0498162 -6.78297 13.9009 10.2124" width="13.9009pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-113"></use></g><g transform="matrix(.0091,0,0,-0.0091,7.384,3.132)"><use xlink:href="#g50-85"></use></g></svg>-</span>value of a given hadron is assumed to obey any one of the standard (Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein) distributions with the kinetic freeze-out temperature and average transverse flow velocity. The <svg height="10.2124pt" style="vertical-align:-3.42943pt"
我们研究了质心能量为 GeV 的质子-质子(pp)、氘核-金(d-Au)和金-金(Au-Au)对撞中产生的中性粒子和已识别带电强子的横动量()谱。研究是在部分子水平使用的多源热模型框架内进行的。假设任何强子的-值都来自方位角各向同性分布的两个或三个粒子。每个粒子对给定强子-值的贡献被假定为服从任何一种标准(麦克斯韦-玻尔兹曼分布、费米-狄拉克分布和玻色-爱因斯坦分布),具有动力学冻结温度和平均横向流动速度。终态强子的光谱可以通过两个或三个分量的叠加来拟合。我们用蒙特卡罗方法得到的结果来拟合 PHENIX 和 STAR 合作组织的实验结果。本工作的结果可作为其他实验和模拟研究的合适参考基线。
{"title":"Extracting Kinetic Freeze-Out Properties in High-Energy Collisions Using a Multisource Thermal Model","authors":"Jia-Yu Chen, Mai-Ying Duan, Fu-Hu Liu, Khusniddin K. Olimov","doi":"10.1155/2024/9938669","DOIUrl":"https://doi.org/10.1155/2024/9938669","url":null,"abstract":"We study the transverse momentum (&lt;span&gt;&lt;svg height=\"10.2124pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -6.78297 13.9009 10.2124\" width=\"13.9009pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,7.384,3.132)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt;)&lt;/span&gt; spectra of neutral pions and identified charged hadrons produced in proton–proton (pp), deuteron–gold (d–Au), and gold–gold (Au–Au) collisions at the center of mass energy &lt;span&gt;&lt;svg height=\"13.1484pt\" style=\"vertical-align:-4.16998pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.97842 40.131 13.1484\" width=\"40.131pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,1.262)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;rect height=\"0.65243\" width=\"18.8994\" x=\"9.96925\" y=\"-8.27617\"&gt;&lt;/rect&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,9.969,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,14.779,3.132)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,21.54,3.132)\"&gt;&lt;use xlink:href=\"#g190-79\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,32.5,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span&gt;&lt;/span&gt;&lt;svg height=\"13.1484pt\" style=\"vertical-align:-4.16998pt\" version=\"1.1\" viewbox=\"43.713183799999996 -8.97842 18.919 13.1484\" width=\"18.919pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,43.763,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,50.003,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,56.243,0)\"&gt;&lt;use xlink:href=\"#g113-49\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;/span&gt; GeV. The study is made in the framework of a multisource thermal model used in the partonic level. It is assumed that the contribution to the &lt;span&gt;&lt;svg height=\"10.2124pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -6.78297 13.9009 10.2124\" width=\"13.9009pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;use xlink:href=\"#g113-113\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,7.384,3.132)\"&gt;&lt;use xlink:href=\"#g50-85\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;-&lt;/span&gt;value of any hadron comes from two or three partons with an isotropic distribution of the azimuthal angle. The contribution of each parton to the &lt;span&gt;&lt;svg height=\"10.2124pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -6.78297 13.9009 10.2124\" width=\"13.9009pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;use xlink:href=\"#g113-113\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,7.384,3.132)\"&gt;&lt;use xlink:href=\"#g50-85\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;-&lt;/span&gt;value of a given hadron is assumed to obey any one of the standard (Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein) distributions with the kinetic freeze-out temperature and average transverse flow velocity. The &lt;svg height=\"10.2124pt\" style=\"vertical-align:-3.42943pt\"","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"10 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140298121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modified Gravity Model and Wormhole Solution 修正重力模型和虫洞解决方案
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-03-12 DOI: 10.1155/2024/3717418
S. Davood Sadatian, S. Mohamad Reza Hosseini
We investigate wormhole solutions using the modified gravity model <span><svg height="12.7178pt" style="vertical-align:-3.42947pt" version="1.1" viewbox="-0.0498162 -9.28833 24.939 12.7178" width="24.939pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-103"></use></g><g transform="matrix(.013,0,0,-0.013,8.352,0)"><use xlink:href="#g113-41"></use></g><g transform="matrix(.013,0,0,-0.013,12.85,0)"><use xlink:href="#g113-82"></use></g><g transform="matrix(.013,0,0,-0.013,21.975,0)"><use xlink:href="#g113-45"></use></g></svg><span></span><svg height="12.7178pt" style="vertical-align:-3.42947pt" version="1.1" viewbox="27.0681838 -9.28833 13.015 12.7178" width="13.015pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,27.118,0)"><use xlink:href="#g113-85"></use></g><g transform="matrix(.013,0,0,-0.013,35.404,0)"><use xlink:href="#g113-42"></use></g></svg></span> with viscosity and aim to find a solution for the existence of wormholes mathematically without violating the energy conditions. We show that there is no need to define a wormhole from exotic matter and analyze the equations with numerical analysis to establish weak energy conditions. In the numerical analysis, we found that the appropriate values of the parameters can maintain the weak energy conditions without the need for exotic matter. Adjusting the parameters of the model can increase or decrease the rate of positive energy density or radial and tangential pressures. According to the numerical analysis conducted in this paper, the weak energy conditions are established in the whole space if <span><svg height="8.98582pt" style="vertical-align:-0.6370001pt" version="1.1" viewbox="-0.0498162 -8.34882 18.648 8.98582" width="18.648pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g><g transform="matrix(.013,0,0,-0.013,11.017,0)"></path></g></svg><span></span><svg height="8.98582pt" style="vertical-align:-0.6370001pt" version="1.1" viewbox="22.230183800000002 -8.34882 6.418 8.98582" width="6.418pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,22.28,0)"></path></g></svg></span> and <span><svg height="12.7178pt" style="vertical-align:-3.42947pt" version="1.1" viewbox="-0.0498162 -9.28833 39.187 12.7178" width="39.187pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g><g transform="matrix(.013,0,0,-0.013,6.24,0)"></path></g><g transform="matrix(.013,0,0,-0.013,12.48,0)"></path></g><g transform="matrix(.013,0,0,-0.013,15.444,0)"></path></g><g transform="matrix(.013,0,0,-0.013,21.684,0)"></path></g><g transform="matrix(.013,0,0,-0.013,31.556,0)"><use xlink:href="#g117-91"></use></g></svg><span></span><svg
我们利用带粘性的修正引力模型研究虫洞解决方案,目的是在不违反能量条件的情况下从数学上找到虫洞存在的解决方案。我们证明无需从奇异物质中定义虫洞,并通过数值分析方程建立弱能量条件。在数值分析中,我们发现适当的参数值可以维持弱能量条件,而不需要外来物质。调整模型参数可以增加或减少正能量密度或径向和切向压强的速率。根据本文的数值分析,如果 和 或 和 ,则整个空间的弱能量条件成立。分析还表明,虫洞的支撑物质接近于正常物质,这表明带粘性的广义模型具有可接受的参数空间来描述虫洞,而不需要奇异物质。
{"title":"Modified Gravity Model and Wormhole Solution","authors":"S. Davood Sadatian, S. Mohamad Reza Hosseini","doi":"10.1155/2024/3717418","DOIUrl":"https://doi.org/10.1155/2024/3717418","url":null,"abstract":"We investigate wormhole solutions using the modified gravity model &lt;span&gt;&lt;svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 24.939 12.7178\" width=\"24.939pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;use xlink:href=\"#g113-103\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,8.352,0)\"&gt;&lt;use xlink:href=\"#g113-41\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,12.85,0)\"&gt;&lt;use xlink:href=\"#g113-82\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,21.975,0)\"&gt;&lt;use xlink:href=\"#g113-45\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span&gt;&lt;/span&gt;&lt;svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"27.0681838 -9.28833 13.015 12.7178\" width=\"13.015pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,27.118,0)\"&gt;&lt;use xlink:href=\"#g113-85\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,35.404,0)\"&gt;&lt;use xlink:href=\"#g113-42\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;/span&gt; with viscosity and aim to find a solution for the existence of wormholes mathematically without violating the energy conditions. We show that there is no need to define a wormhole from exotic matter and analyze the equations with numerical analysis to establish weak energy conditions. In the numerical analysis, we found that the appropriate values of the parameters can maintain the weak energy conditions without the need for exotic matter. Adjusting the parameters of the model can increase or decrease the rate of positive energy density or radial and tangential pressures. According to the numerical analysis conducted in this paper, the weak energy conditions are established in the whole space if &lt;span&gt;&lt;svg height=\"8.98582pt\" style=\"vertical-align:-0.6370001pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.34882 18.648 8.98582\" width=\"18.648pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,11.017,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span&gt;&lt;/span&gt;&lt;svg height=\"8.98582pt\" style=\"vertical-align:-0.6370001pt\" version=\"1.1\" viewbox=\"22.230183800000002 -8.34882 6.418 8.98582\" width=\"6.418pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,22.28,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt;&lt;/span&gt; and &lt;span&gt;&lt;svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 39.187 12.7178\" width=\"39.187pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,6.24,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,12.48,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,15.444,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,21.684,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,31.556,0)\"&gt;&lt;use xlink:href=\"#g117-91\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span&gt;&lt;/span&gt;&lt;svg","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140105939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Properties and Behaviors of Heavy Quarkonia: Insights through Fractional Model and Topological Defects 重夸克态的性质和行为:通过分数模型和拓扑缺陷获得的启示
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-03-02 DOI: 10.1155/2024/2730568
M. Abu-shady, H. M. Fath-Allah
In this study, we investigated the impact of a topological defect () on the properties of heavy quarkonia using the extended Cornell potential. We solved the fractional radial Schrödinger equation (SE) using the extended Nikiforov-Uvarov (ENU) method to obtain the eigenvalues of energy, which allowed us to calculate the masses of charmonium and bottomonium. One significant observation was the splitting between nP and nD states, which attributed to the presence of the topological defect. We discovered that the excited states were divided into components corresponding to , indicating that the gravity field induced by the topological defect interacts with energy levels like the Zeeman effect caused by a magnetic field. Additionally, we derived the wave function and calculated the root-mean radii for charmonium and bottomonium. A comparison with the classical models was performed, resulting in better results being obtained. Furthermore, we investigated the thermodynamic properties of charmonium and bottomonium, determining quantities such as energy, partition function, free energy, mean energy, specific heat, and entropy for P-states. The obtained results were found to be consistent with experimental data and previous works. In conclusion, the fractional model used in this work proved an essential role in understanding the various properties and behaviors of heavy quarkonia in the presence of topological defects.
在这项研究中,我们利用扩展康奈尔势研究了拓扑缺陷()对重夸克态性质的影响。我们用扩展的尼基福罗夫-乌瓦洛夫(ENU)方法求解了分数径向薛定谔方程(SE),得到了能量特征值,从而计算出了粲和底粲的质量。一个重要的观察结果是 nP 和 nD 状态之间的分裂,这归因于拓扑缺陷的存在。此外,我们还推导出了粲和底粲的波函数,并计算了它们的均方根半径。通过与经典模型的比较,我们获得了更好的结果。此外,我们还研究了粲和底铵的热力学性质,确定了 P 态的能量、分配函数、自由能、平均能、比热和熵等量。所得结果与实验数据和以前的工作相一致。总之,这项工作中使用的分数模型在理解存在拓扑缺陷的重夸克态的各种性质和行为方面发挥了重要作用。
{"title":"Properties and Behaviors of Heavy Quarkonia: Insights through Fractional Model and Topological Defects","authors":"M. Abu-shady, H. M. Fath-Allah","doi":"10.1155/2024/2730568","DOIUrl":"https://doi.org/10.1155/2024/2730568","url":null,"abstract":"In this study, we investigated the impact of a topological defect (<span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 7.30254 9.49473\" width=\"7.30254pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>)</span> on the properties of heavy quarkonia using the extended Cornell potential. We solved the fractional radial Schrödinger equation (SE) using the extended Nikiforov-Uvarov (ENU) method to obtain the eigenvalues of energy, which allowed us to calculate the masses of charmonium and bottomonium. One significant observation was the splitting between nP and nD states, which attributed to the presence of the topological defect. We discovered that the excited states were divided into components corresponding to <span><svg height=\"9.63826pt\" style=\"vertical-align:-0.3499298pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 20.275 9.63826\" width=\"20.275pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,6.24,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,12.644,0)\"></path></g></svg><span></span><span><svg height=\"9.63826pt\" style=\"vertical-align:-0.3499298pt\" version=\"1.1\" viewbox=\"23.1301838 -9.28833 6.427 9.63826\" width=\"6.427pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,23.18,0)\"></path></g></svg>,</span></span> indicating that the gravity field induced by the topological defect interacts with energy levels like the Zeeman effect caused by a magnetic field. Additionally, we derived the wave function and calculated the root-mean radii for charmonium and bottomonium. A comparison with the classical models was performed, resulting in better results being obtained. Furthermore, we investigated the thermodynamic properties of charmonium and bottomonium, determining quantities such as energy, partition function, free energy, mean energy, specific heat, and entropy for P-states. The obtained results were found to be consistent with experimental data and previous works. In conclusion, the fractional model used in this work proved an essential role in understanding the various properties and behaviors of heavy quarkonia in the presence of topological defects.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"13 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140018623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Time-Varying Magnetic Field on QGP Equation of State 时变磁场对 QGP 状态方程的作用
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-02-12 DOI: 10.1155/2024/1870528
Yogesh Kumar, Poonam Jain, Pargin Bangotra, Vinod Kumar, D. V. Singh, S. K. Rajouria
The phase diagram of quantum chromodynamics (QCD) and its associated thermodynamic properties of quark-gluon plasma (QGP) are studied in the presence of time-dependent magnetic field. The study plays a pivotal role in the field of cosmology, astrophysics, and heavy-ion collisions. In order to explore the structure of quark-gluon plasma to deal with the dynamics of quarks and gluons, we investigate the equation of state (EoS) not only in the environment of static magnetic field but also in the presence of time-varying magnetic fields. So, for determining the equation of state of QGP at nonzero magnetic fields, we revisited our earlier model where the effect of time-varying magnetic field was not taken into consideration. Using the phenomenological model, some appealing features are noticed depending upon the three different scales: effective mass of quark, temperature, and time-independent and time-dependent magnetic fields. Earlier the effective mass of quark was incorporated in our calculations, and in the current work, it is modified for static and time-varying magnetic fields. Thermodynamic observables including pressure, energy density, and entropy are calculated for a wide range of temperature- and time-dependent as well as time-independent magnetic fields. Finally, we claim that the EoS are highly affected in the presence of a magnetic field. Our results are notable compared to other approaches and found to be advantageous for the measurement of QGP equation of state. These crucial findings with and without time-varying magnetic field could have phenomenological implications in various sectors of high-energy physics.
研究了量子色动力学(QCD)相图及其在随时间变化的磁场作用下的夸克-胶子等离子体(QGP)的相关热力学性质。这项研究在宇宙学、天体物理学和重离子碰撞领域发挥着举足轻重的作用。为了探索夸克-胶子等离子体的结构以处理夸克和胶子的动力学,我们不仅研究了静态磁场环境下的状态方程(EoS),还研究了时变磁场环境下的状态方程(EoS)。因此,为了确定 QGP 在非零磁场下的状态方程,我们重新审视了之前未考虑时变磁场影响的模型。利用该现象学模型,我们注意到了三个不同尺度的一些吸引人的特征:夸克的有效质量、温度以及与时间无关和与时间有关的磁场。早些时候,我们在计算中纳入了夸克的有效质量,而在目前的工作中,我们针对静态磁场和时变磁场对其进行了修改。热力学观测值包括压力、能量密度和熵,这些观测值是针对与温度和时间相关以及与时间无关的各种磁场计算得出的。最后,我们声称,在磁场存在的情况下,EoS 会受到很大影响。与其他方法相比,我们的结果非常显著,并发现这对测量 QGP 状态方程非常有利。这些有无时变磁场的重要发现可能会对高能物理的各个领域产生现象学影响。
{"title":"Role of Time-Varying Magnetic Field on QGP Equation of State","authors":"Yogesh Kumar, Poonam Jain, Pargin Bangotra, Vinod Kumar, D. V. Singh, S. K. Rajouria","doi":"10.1155/2024/1870528","DOIUrl":"https://doi.org/10.1155/2024/1870528","url":null,"abstract":"The phase diagram of quantum chromodynamics (QCD) and its associated thermodynamic properties of quark-gluon plasma (QGP) are studied in the presence of time-dependent magnetic field. The study plays a pivotal role in the field of cosmology, astrophysics, and heavy-ion collisions. In order to explore the structure of quark-gluon plasma to deal with the dynamics of quarks and gluons, we investigate the equation of state (EoS) not only in the environment of static magnetic field but also in the presence of time-varying magnetic fields. So, for determining the equation of state of QGP at nonzero magnetic fields, we revisited our earlier model where the effect of time-varying magnetic field was not taken into consideration. Using the phenomenological model, some appealing features are noticed depending upon the three different scales: effective mass of quark, temperature, and time-independent and time-dependent magnetic fields. Earlier the effective mass of quark was incorporated in our calculations, and in the current work, it is modified for static and time-varying magnetic fields. Thermodynamic observables including pressure, energy density, and entropy are calculated for a wide range of temperature- and time-dependent as well as time-independent magnetic fields. Finally, we claim that the EoS are highly affected in the presence of a magnetic field. Our results are notable compared to other approaches and found to be advantageous for the measurement of QGP equation of state. These crucial findings with and without time-varying magnetic field could have phenomenological implications in various sectors of high-energy physics.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"209 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139761732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advances in High Energy Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1