High-Current Sensing Technology for Transparent Power Grids: A Review

IF 5.2 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of the Industrial Electronics Society Pub Date : 2024-04-11 DOI:10.1109/OJIES.2024.3387432
Hongyu Sun;Songling Huang;Lisha Peng
{"title":"High-Current Sensing Technology for Transparent Power Grids: A Review","authors":"Hongyu Sun;Songling Huang;Lisha Peng","doi":"10.1109/OJIES.2024.3387432","DOIUrl":null,"url":null,"abstract":"The global energy industry is moving toward a trend of green and low-carbon transformation. A transparent power grid represents a new development form under this energy transition trend, integrating the power grid with new generation information and communication technologies, exemplified by the Internet. The use of micro smart sensors allows real-time monitoring of many important parameters of power systems via current, which is crucial for ensuring safe, stable, intelligent, and green power grid operation. Here, based on the development logic of current sensing technology for traditional-smart-transparent power grids, we focus our research on high-current sensing in a transparent power grid. First, we review the widely used traditional current sensing methods of shunts and Rogowski coils. More advanced optical fiber current sensing methods and microelectromechanical system current sensing chips are then introduced, which are more suitable for the smart sensing requirements of transparent power grids. In addition, we present and discuss the technical characteristics, research status, application scope, advantages and disadvantages, and future development directions of the above methods in detail. Finally, we address many essential challenges, including miniaturization, integration, low power consumption, passive wireless sensing, long-range operation, and complex environmental parameters in the comprehensive intelligent and transparent sensing of current parameters in power grids. To address these challenges, we present three possible development directions: sensor improvement, development of communication and networking technologies for sensors, and the advancement of intelligent and fast processing methods through communication.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"326-358"},"PeriodicalIF":5.2000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10496816","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10496816/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The global energy industry is moving toward a trend of green and low-carbon transformation. A transparent power grid represents a new development form under this energy transition trend, integrating the power grid with new generation information and communication technologies, exemplified by the Internet. The use of micro smart sensors allows real-time monitoring of many important parameters of power systems via current, which is crucial for ensuring safe, stable, intelligent, and green power grid operation. Here, based on the development logic of current sensing technology for traditional-smart-transparent power grids, we focus our research on high-current sensing in a transparent power grid. First, we review the widely used traditional current sensing methods of shunts and Rogowski coils. More advanced optical fiber current sensing methods and microelectromechanical system current sensing chips are then introduced, which are more suitable for the smart sensing requirements of transparent power grids. In addition, we present and discuss the technical characteristics, research status, application scope, advantages and disadvantages, and future development directions of the above methods in detail. Finally, we address many essential challenges, including miniaturization, integration, low power consumption, passive wireless sensing, long-range operation, and complex environmental parameters in the comprehensive intelligent and transparent sensing of current parameters in power grids. To address these challenges, we present three possible development directions: sensor improvement, development of communication and networking technologies for sensors, and the advancement of intelligent and fast processing methods through communication.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于透明电网的大电流传感技术:综述
全球能源产业正朝着绿色、低碳的方向转型。在这一能源转型趋势下,透明电网代表了一种新的发展形态,它将电网与以互联网为代表的新一代信息和通信技术相结合。微型智能传感器的使用可以通过电流对电力系统的许多重要参数进行实时监测,这对于确保电网的安全、稳定、智能和绿色运行至关重要。在此,我们基于传统智能透明电网电流传感技术的发展逻辑,重点研究透明电网中的大电流传感技术。首先,我们回顾了广泛使用的分流器和罗戈夫斯基线圈等传统电流传感方法。然后介绍了更先进的光纤电流传感方法和微机电系统电流传感芯片,它们更适合透明电网的智能传感要求。此外,我们还详细介绍和讨论了上述方法的技术特点、研究现状、应用范围、优缺点和未来发展方向。最后,我们探讨了电网电流参数综合智能透明传感所面临的诸多基本挑战,包括微型化、集成化、低功耗、无源无线传感、远距离工作和复杂环境参数等。为了应对这些挑战,我们提出了三个可能的发展方向:改进传感器、发展传感器的通信和网络技术,以及通过通信推进智能和快速处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Open Journal of the Industrial Electronics Society
IEEE Open Journal of the Industrial Electronics Society ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
10.80
自引率
2.40%
发文量
33
审稿时长
12 weeks
期刊介绍: The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments. Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.
期刊最新文献
Short-Term Control of Heat Pumps to Support Power Grid Operation Effects of Grid Voltage and Load Unbalances on the Efficiency of a Hybrid Distribution Transformer Enhanced PI Control Based SHC-PWM Strategy for Active Power Filters A Detailed Study on Algorithms for Predictive Maintenance in Smart Manufacturing: Chip Form Classification Using Edge Machine Learning Design and Evaluation of a Voice-Controlled Elevator System to Improve the Safety and Accessibility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1