Char formation and smoke suppression mechanism of montmorillonite modified by ammonium polyphosphate/silane towards fire safety enhancement for wood composites

IF 3.1 2区 农林科学 Q1 FORESTRY Wood Science and Technology Pub Date : 2024-04-01 DOI:10.1007/s00226-024-01546-1
Liangliang Zhang, Kangren Niu, Haotian Wang, Jiamin Wang, Meihong Liu, Yafang Lei, Li Yan
{"title":"Char formation and smoke suppression mechanism of montmorillonite modified by ammonium polyphosphate/silane towards fire safety enhancement for wood composites","authors":"Liangliang Zhang,&nbsp;Kangren Niu,&nbsp;Haotian Wang,&nbsp;Jiamin Wang,&nbsp;Meihong Liu,&nbsp;Yafang Lei,&nbsp;Li Yan","doi":"10.1007/s00226-024-01546-1","DOIUrl":null,"url":null,"abstract":"<div><p>The low efficiency of montmorillonite (MMT) as a nano-flame retardant has limited its widespread application. In this work, a clay-based flame retardant was developed by modifying MMT with ammonium polyphosphate (APP) and 3-Aminopropyltriethoxysilane (SCA). Subsequently, wood composites treated with the clay-based flame retardant were prepared, and their char formation and smoke suppression behavior were investigated. MMT sheet effectively absorbed a significant amount of APP, and the broken edges of the sheet were successfully grafted with SCA. This promoted the formation of polyphosphoric acid and improved the interface compatibility among the components of wood composites. The clay-treated wood composites exhibited a reduction in total heat release (by over 27.0%) and a significant increase in char residues (up to 111.9%) compared to the control. Moreover, the second peak of the smoke production rate and mean CO yield were decreased by up to 43.2% and 63.2%, respectively. The formation of continuous, compact, and cross-linking (e.g. C-Si and Si-O-P) char layers endowed wood composites with thermal insulation, delayed the spread of flammable or poisonous gases (e.g. CH<sub>4</sub> and CO), and suppressed the release of toxic smoke. Therefore, a simple and effective method for fabricating a clay-based flame retardant was proposed, which holds potential application in wooden construction materials.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 2","pages":"811 - 827"},"PeriodicalIF":3.1000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-024-01546-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The low efficiency of montmorillonite (MMT) as a nano-flame retardant has limited its widespread application. In this work, a clay-based flame retardant was developed by modifying MMT with ammonium polyphosphate (APP) and 3-Aminopropyltriethoxysilane (SCA). Subsequently, wood composites treated with the clay-based flame retardant were prepared, and their char formation and smoke suppression behavior were investigated. MMT sheet effectively absorbed a significant amount of APP, and the broken edges of the sheet were successfully grafted with SCA. This promoted the formation of polyphosphoric acid and improved the interface compatibility among the components of wood composites. The clay-treated wood composites exhibited a reduction in total heat release (by over 27.0%) and a significant increase in char residues (up to 111.9%) compared to the control. Moreover, the second peak of the smoke production rate and mean CO yield were decreased by up to 43.2% and 63.2%, respectively. The formation of continuous, compact, and cross-linking (e.g. C-Si and Si-O-P) char layers endowed wood composites with thermal insulation, delayed the spread of flammable or poisonous gases (e.g. CH4 and CO), and suppressed the release of toxic smoke. Therefore, a simple and effective method for fabricating a clay-based flame retardant was proposed, which holds potential application in wooden construction materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚磷酸铵/硅烷改性蒙脱石的成炭和抑烟机理--提高木质复合材料的防火安全性
蒙脱石(MMT)作为纳米阻燃剂的效率较低,限制了其广泛应用。在这项工作中,通过用聚磷酸铵(APP)和 3-氨基丙基三乙氧基硅烷(SCA)对蒙脱石进行改性,开发了一种粘土基阻燃剂。随后,制备了经粘土基阻燃剂处理的木质复合材料,并研究了其成炭和抑烟行为。MMT 片材有效地吸收了大量的 APP,片材的破碎边缘成功地接枝了 SCA。这促进了聚磷酸的形成,改善了木质复合材料各组分之间的界面相容性。与对照组相比,经过粘土处理的木质复合材料的总热量释放量减少(超过 27.0%),木炭残留量显著增加(高达 111.9%)。此外,烟雾产生率的第二个峰值和平均 CO 产量分别降低了 43.2% 和 63.2%。连续、致密和交联(如 C-Si 和 Si-O-P)炭层的形成赋予了木质复合材料隔热性能,延缓了可燃或有毒气体(如 CH4 和 CO)的扩散,并抑制了有毒烟雾的释放。因此,我们提出了一种简单有效的方法来制造粘土基阻燃剂,它在木质建筑材料中具有潜在的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wood Science and Technology
Wood Science and Technology 工程技术-材料科学:纸与木材
CiteScore
5.90
自引率
5.90%
发文量
75
审稿时长
3 months
期刊介绍: Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.
期刊最新文献
Real-time tracking of the characteristics of strands in OSB production lines Melamine-formaldehyde in the conservation of waterlogged archaeological wood: investigating the effect of the treatment on wood residual chemistry with FTIR, 13C NMR, Py(HMDS)-GC/MS and EGA-MS Production of activated biocarbons by microwave-assisted chemical activation of hardwood sawdust and their application in the simultaneous removal of polymers of different origins from aqueous systems New ester-type chemical bonding wood adhesion with a dicarboxylic acid compound Progressive degradation of acetylated wood by the brown rot fungi Coniophora puteana and Rhodonia placenta
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1