首页 > 最新文献

Wood Science and Technology最新文献

英文 中文
Progressive degradation of acetylated wood by the brown rot fungi Coniophora puteana and Rhodonia placenta 褐腐真菌 Coniophora puteana 和 Rhodonia placenta 对乙酰化木材的逐步降解作用
IF 3.1 2区 农林科学 Q1 FORESTRY Pub Date : 2024-11-19 DOI: 10.1007/s00226-024-01620-8
Tiina Belt, Muhammad Awais

Acetylation is a wood modification method that reduces the hygroscopicity of wood and increases its resistance to degradation by wood decaying fungi. Even though acetylated wood can have very high decay resistance, the wood material can be degraded and sometimes deacetylated by fungi. This study investigated the degradation and deacetylation of acetylated wood by Coniophora puteana and Rhodonia placenta to better understand the relationship between degradation and deacetylation in two different brown rot fungi. Wood samples were exposed to the fungi in a stacked-sample decay test, followed by acetyl content measurements and FTIR spectroscopy to investigate chemical changes in the samples. The results showed that both fungi could degrade acetylated wood to high mass loss despite a strong reduction in moisture content, but only R. placenta was found to cause preferential deacetylation. The deacetylation was slight and only observed in the early stages of decay in highly acetylated wood. Otherwise, acetyl groups were lost from the samples at the rate of mass loss. FTIR spectroscopy confirmed the loss of acetyl groups and revealed some chemical differences between unacetylated and acetylated wood. The spectral data indicated the loss of acetyl groups from lignin, which suggests that the loss of acetyl groups is not only due to the degradation of acetylated carbohydrates. The degradation of acetylated wood required further investigation, but it is clear that extensive deacetylation is not a requirement for brown rot degradation.

乙酰化是一种木材改性方法,可降低木材的吸湿性,提高其抗木材腐朽真菌降解的能力。尽管乙酰化木材具有很强的抗腐性,但这种木材材料也会被真菌降解,有时还会被脱乙酰化。本研究调查了褐腐真菌 Coniophora puteana 和 Rhodonia placenta 对乙酰化木材的降解和脱乙酰化作用,以更好地了解两种不同褐腐真菌降解和脱乙酰化之间的关系。在堆叠样品腐朽试验中,木材样品暴露于真菌,然后测量乙酰含量,并用傅立叶变换红外光谱法研究样品中的化学变化。结果表明,尽管木材含水率大幅降低,但两种真菌都能降解乙酰化木材,造成大量质量损失,但只有胎盘霉菌能优先导致脱乙酰化。这种脱乙酰作用很轻微,而且只有在高乙酰化木材腐烂的早期阶段才能观察到。否则,乙酰基就会以质量损失的速度从样品中消失。傅立叶变换红外光谱证实了乙酰基的损失,并揭示了未乙酰化木材和乙酰化木材之间的一些化学差异。光谱数据表明乙酰基从木质素中流失,这表明乙酰基的流失不仅仅是由于乙酰化碳水化合物的降解。乙酰化木材的降解需要进一步研究,但很明显,广泛的脱乙酰化并不是褐腐病降解的必要条件。
{"title":"Progressive degradation of acetylated wood by the brown rot fungi Coniophora puteana and Rhodonia placenta","authors":"Tiina Belt,&nbsp;Muhammad Awais","doi":"10.1007/s00226-024-01620-8","DOIUrl":"10.1007/s00226-024-01620-8","url":null,"abstract":"<div><p>Acetylation is a wood modification method that reduces the hygroscopicity of wood and increases its resistance to degradation by wood decaying fungi. Even though acetylated wood can have very high decay resistance, the wood material can be degraded and sometimes deacetylated by fungi. This study investigated the degradation and deacetylation of acetylated wood by <i>Coniophora puteana</i> and <i>Rhodonia placenta</i> to better understand the relationship between degradation and deacetylation in two different brown rot fungi. Wood samples were exposed to the fungi in a stacked-sample decay test, followed by acetyl content measurements and FTIR spectroscopy to investigate chemical changes in the samples. The results showed that both fungi could degrade acetylated wood to high mass loss despite a strong reduction in moisture content, but only <i>R. placenta</i> was found to cause preferential deacetylation. The deacetylation was slight and only observed in the early stages of decay in highly acetylated wood. Otherwise, acetyl groups were lost from the samples at the rate of mass loss. FTIR spectroscopy confirmed the loss of acetyl groups and revealed some chemical differences between unacetylated and acetylated wood. The spectral data indicated the loss of acetyl groups from lignin, which suggests that the loss of acetyl groups is not only due to the degradation of acetylated carbohydrates. The degradation of acetylated wood required further investigation, but it is clear that extensive deacetylation is not a requirement for brown rot degradation.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-024-01620-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peltogynoids contributing to discoloration in Peltogyne mexicana heartwood 造成墨西哥盾叶朴树心材褪色的盾叶朴树素
IF 3.1 2区 农林科学 Q1 FORESTRY Pub Date : 2024-11-15 DOI: 10.1007/s00226-024-01617-3
Yusuke Taga, Kosei Yamauchi, Tohru Mitsunaga

Four new peltogynoid monomers (3, 7, 10, 11) and a new peltogynoid dimer (9) were isolated from the heartwood of Peltogyne mexiacana, along with six known compounds (1, 2, 4, 5, 6, 8). Among the known compounds, the absolute configurations of two flavanones (5, 6) were determined. The structures of the isolated compounds were determined using NMR and MALDI-TOF MS analysis. The discoloration of the methanol solutions of the isolated peltogynoids and flavanones was examined by exposing them to room light in the air. The methanol solutions of (+)-peltogynol (1) and (+)-mopanol (4) discolored to reddish and bluish purple, respectively. After discoloration, the b* values of these compounds decreased significantly from 12.1 to 19.1 to -0.7 and − 1.8, respectively. These precursors of pigment compounds 1 and 4 have a catechol moiety in the B ring, and a hetero-six-membered ring (D ring) connecting the B and C ring of flavan-3,4-diol via an oxyethylene bridge, which is similar to the structure of leucoanthocyanidin. These results led to the hypothesis that the metabolized pigment compounds have anthocyanidin-like structures with peltogyne skeleton.

从 Peltogyne mexiacana 的心材中分离出了四种新的莕菜素单体(3、7、10、11)和一种新的莕菜素二聚体(9),以及六种已知化合物(1、2、4、5、6、8)。在已知化合物中,确定了两种黄酮(5、6)的绝对构型。利用核磁共振和 MALDI-TOF MS 分析法确定了分离化合物的结构。将分离出的盾形酮类化合物和黄烷酮类化合物的甲醇溶液暴露在室温下进行褪色检测。(+)-peltogynol (1) 和 (+)-mopanol (4) 的甲醇溶液分别褪色为淡红色和蓝紫色。褪色后,这些化合物的 b* 值分别从 12.1 到 19.1 显著下降到-0.7 和-1.8。这些色素化合物的前体 1 和 4 的 B 环上有一个儿茶酚分子,一个杂六元环(D 环)通过氧乙烯桥连接黄烷-3,4-二醇的 B 环和 C 环,这与白花青素的结构相似。这些结果导致了一种假设,即代谢后的色素化合物具有类似花青素的结构,其骨架为盾形花青素。
{"title":"Peltogynoids contributing to discoloration in Peltogyne mexicana heartwood","authors":"Yusuke Taga,&nbsp;Kosei Yamauchi,&nbsp;Tohru Mitsunaga","doi":"10.1007/s00226-024-01617-3","DOIUrl":"10.1007/s00226-024-01617-3","url":null,"abstract":"<div><p>Four new peltogynoid monomers (<b>3</b>, <b>7</b>, <b>10</b>, <b>11</b>) and a new peltogynoid dimer (<b>9</b>) were isolated from the heartwood of <i>Peltogyne mexiacana</i>, along with six known compounds (<b>1</b>, <b>2</b>, <b>4</b>, <b>5</b>, <b>6</b>, <b>8</b>). Among the known compounds, the absolute configurations of two flavanones (<b>5</b>, <b>6</b>) were determined. The structures of the isolated compounds were determined using NMR and MALDI-TOF MS analysis. The discoloration of the methanol solutions of the isolated peltogynoids and flavanones was examined by exposing them to room light in the air. The methanol solutions of (+)-peltogynol (<b>1</b>) and (+)-mopanol (<b>4</b>) discolored to reddish and bluish purple, respectively. After discoloration, the <i>b*</i> values of these compounds decreased significantly from 12.1 to 19.1 to -0.7 and − 1.8, respectively. These precursors of pigment compounds <b>1</b> and <b>4</b> have a catechol moiety in the B ring, and a hetero-six-membered ring (D ring) connecting the B and C ring of flavan-3,4-diol <i>via</i> an oxyethylene bridge, which is similar to the structure of leucoanthocyanidin. These results led to the hypothesis that the metabolized pigment compounds have anthocyanidin-like structures with peltogyne skeleton.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of the antifungal efficiency of coatings on wood 评估木材涂层的抗真菌效率
IF 3.1 2区 农林科学 Q1 FORESTRY Pub Date : 2024-11-15 DOI: 10.1007/s00226-024-01614-6
Olena Myronycheva, Injeong Kim, Olov Karlsson, Liudmyla Kiurcheva, Peter Jacobsson, Dick Sandberg

Wood is an important construction material, but a significant problem hindering its widespread use is susceptibility to biodeterioration and biodegradation. To protect wood against degradation, a surface coating can be used, and it is important to be able to predict the ability of the coating to prevent fungal growth. The currently available standard method to determine the antifungal efficiency of a coating has two weaknesses, viz. no evaluation of the moisture content in the wood material, and no possibility to study antifungal effect of the coating towards an individual fungus. A new quantitative method of determining the antifungal efficiency of coatings is therefore proposed, where a coating is applied to wood and exposed to an individual fungus in a Petri dish. Six commercial water-based coatings containing synthetic biocides were studied on filter paper (EN 15457) and with the new test method on wood blocks. The results show the importance of studying the antifungal efficiency of a coating using individual fungi instead of a mixture of fungi, since individual fungi interact differently with a given biocide in the coating. The moisture content of the wood substrate during the test was affected by how the fungus was established on the coating. This new test approach shows promise in screening the antifungal efficiency of wood coatings containing preservative substances applied to wood material surfaces.

木材是一种重要的建筑材料,但妨碍其广泛使用的一个重要问题是容易发生生物退化和生物降解。为了防止木材降解,可以使用表面涂层,而预测涂层防止真菌生长的能力非常重要。目前可用来确定涂层抗真菌效率的标准方法有两个弱点,即无法评估木质材料中的含水量,也无法研究涂层对单个真菌的抗真菌效果。因此,我们提出了一种新的定量方法来确定涂层的抗真菌效率,即在木材上涂抹涂层,并在培养皿中接触单个真菌。我们在滤纸(EN 15457)上对六种含有合成杀菌剂的商用水基涂料进行了研究,并在木块上使用新的测试方法进行了研究。结果表明,使用单个真菌而不是真菌混合物来研究涂料的抗真菌效率非常重要,因为单个真菌与涂料中特定杀菌剂的相互作用是不同的。在测试过程中,木质基材的含水量会受到真菌在涂层上生长方式的影响。这种新的测试方法有望筛选出木质材料表面含有防腐剂的木质涂料的抗真菌效率。
{"title":"Evaluation of the antifungal efficiency of coatings on wood","authors":"Olena Myronycheva,&nbsp;Injeong Kim,&nbsp;Olov Karlsson,&nbsp;Liudmyla Kiurcheva,&nbsp;Peter Jacobsson,&nbsp;Dick Sandberg","doi":"10.1007/s00226-024-01614-6","DOIUrl":"10.1007/s00226-024-01614-6","url":null,"abstract":"<div><p>Wood is an important construction material, but a significant problem hindering its widespread use is susceptibility to biodeterioration and biodegradation. To protect wood against degradation, a surface coating can be used, and it is important to be able to predict the ability of the coating to prevent fungal growth. The currently available standard method to determine the antifungal efficiency of a coating has two weaknesses, viz<i>.</i> no evaluation of the moisture content in the wood material, and no possibility to study antifungal effect of the coating towards an individual fungus. A new quantitative method of determining the antifungal efficiency of coatings is therefore proposed, where a coating is applied to wood and exposed to an individual fungus in a Petri dish. Six commercial water-based coatings containing synthetic biocides were studied on filter paper (EN 15457) and with the new test method on wood blocks. The results show the importance of studying the antifungal efficiency of a coating using individual fungi instead of a mixture of fungi, since individual fungi interact differently with a given biocide in the coating. The moisture content of the wood substrate during the test was affected by how the fungus was established on the coating. This new test approach shows promise in screening the antifungal efficiency of wood coatings containing preservative substances applied to wood material surfaces.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-024-01614-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of local mechanical properties of clear wood in relation to the local fiber deviation 根据局部纤维偏差确定清材的局部机械特性
IF 3.1 2区 农林科学 Q1 FORESTRY Pub Date : 2024-11-13 DOI: 10.1007/s00226-024-01607-5
L. Demoulin, G. Pot, L. Denaud, S. Girardon, B. Marcon

Products made with veneers such as Laminated Veneer Lumber can reach higher properties than solid wood because the defects such as knots (but not only) are distributed among the various layers. Visual sorting, even using automatic grading, is only partially efficient for evaluating mechanical properties, which mainly depends on the fiber orientation and the density both at local scale. An experimental protocol has been established to correlate the nondestructive (fiber orientation and density) estimation and the destructive (tensile test) measurement of beech veneer wood. The aim is to understand the impact of the small imperfections on clear wood in fiber orientation on the mechanical properties. In the present study, wood veneer is assumed to be a transverse isotropic material due to the predominant wood fiber direction in the growth direction of the tree. Experimental measurements of modulus of elasticity are based on Digital Image Correlation (DIC) and virtual extensometer. The Young modulus model is based on a composite material model that considers fiber orientation and density. The Young modulus model is used to determine longitudinal, transverse, and shear moduli, for specimens with angles ranging from 0 to 45°. Mechanical properties are obtained by mathematical minimization between experimental and model data. The coefficient of determination obtained was 0.97. The measure of the fiber angle with a resolution of 1 × 1 mm2 and the tensile test with the DIC, both local, significantly improve Young modulus measurement compared to previous studies’ assessment accuracy and allow for a better understanding of the wood behavior.

用单板(如层压单板木材)制成的产品可以达到比实木更高的性能,因为缺陷(如节疤)分布在各层中。目视分选,即使使用自动分级,也只能部分有效地评估机械性能,而机械性能主要取决于局部范围内的纤维方向和密度。我们已经制定了一个实验方案,将榉木单板木材的非破坏性(纤维方向和密度)评估与破坏性(拉伸试验)测量联系起来。这样做的目的是为了了解清材纤维取向上的微小瑕疵对机械性能的影响。在本研究中,假定木皮是横向各向同性材料,因为木纤维方向主要在树木的生长方向上。弹性模量的实验测量基于数字图像相关(DIC)和虚拟拉伸计。杨氏模量模型基于复合材料模型,该模型考虑了纤维方向和密度。杨氏模量模型用于确定角度为 0 至 45°的试样的纵向、横向和剪切模量。力学性能是通过对实验数据和模型数据进行数学最小化处理而获得的。确定系数为 0.97。与以往研究的评估精度相比,以 1 × 1 mm2 的分辨率测量纤维角和使用 DIC 进行局部拉伸测试,大大提高了杨氏模量的测量精度,并能更好地了解木材的行为。
{"title":"Determination of local mechanical properties of clear wood in relation to the local fiber deviation","authors":"L. Demoulin,&nbsp;G. Pot,&nbsp;L. Denaud,&nbsp;S. Girardon,&nbsp;B. Marcon","doi":"10.1007/s00226-024-01607-5","DOIUrl":"10.1007/s00226-024-01607-5","url":null,"abstract":"<div><p>Products made with veneers such as Laminated Veneer Lumber can reach higher properties than solid wood because the defects such as knots (but not only) are distributed among the various layers. Visual sorting, even using automatic grading, is only partially efficient for evaluating mechanical properties, which mainly depends on the fiber orientation and the density both at local scale. An experimental protocol has been established to correlate the nondestructive (fiber orientation and density) estimation and the destructive (tensile test) measurement of beech veneer wood. The aim is to understand the impact of the small imperfections on clear wood in fiber orientation on the mechanical properties. In the present study, wood veneer is assumed to be a transverse isotropic material due to the predominant wood fiber direction in the growth direction of the tree. Experimental measurements of modulus of elasticity are based on Digital Image Correlation (DIC) and virtual extensometer. The Young modulus model is based on a composite material model that considers fiber orientation and density. The Young modulus model is used to determine longitudinal, transverse, and shear moduli, for specimens with angles ranging from 0 to 45°. Mechanical properties are obtained by mathematical minimization between experimental and model data. The coefficient of determination obtained was 0.97. The measure of the fiber angle with a resolution of 1 × 1 mm<sup>2</sup> and the tensile test with the DIC, both local, significantly improve Young modulus measurement compared to previous studies’ assessment accuracy and allow for a better understanding of the wood behavior.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early detection of heartwood rot caused by Fistulina hepatica in Castanea sativa productive coppices through low-invasive resistance drilling 通过低侵入性抗性钻探,及早发现蓖麻高产灌木中由肝蓟马引起的心材腐烂病
IF 3.1 2区 农林科学 Q1 FORESTRY Pub Date : 2024-11-13 DOI: 10.1007/s00226-024-01616-4
Andreu Meijer, E. Jordán Muñoz-Adalia, Eduard Correal-Mòdol, Carlos Colinas

Chestnut Red Stain (CRS) is a heartwood discoloration that widely affects Castanea sativa Mill. productive coppice stands in the northeast of Spain. At the early stages of infection, the structural properties of the wood are not affected, but still its economic value drops up to 70% due to the rejection of this wood. This disease is caused by the fungus Fistulina hepatica (Schaeff.) With. and causes uncertainty to forest managers since the fungal infection is virtually impossible to detect before felling. The objective of this work was to develop an efficient detection method to evaluate the presence of F. hepatica in early stages of productive periods. A total of 72 chestnuts were analyzed through molecular methods to determine the presence of F. hepatica and with an IML resistance drill to characterize their wood. Thirteen wood quality indices were calculated and their correlation with the presence of the pathogen was evaluated using linear mixed models. We found clear differences between healthy and infected trees in four indices. A new specific index (Chestnut Red Stain Danger index) was designed to estimate the probability of infection by F. hepatica. The results support the hypothesis that the early presence of F. hepatica is detectable through inexpensive and fast mechanical methods early in a rotation. The results of this work will help forest managers evaluate the incidence of CRS, as well as it establishes a novel methodology for further development of resistance drilling techniques for heartwood rot detection.

栗木红斑(CRS)是一种心材变色现象,广泛影响西班牙东北部的栗木(Castanea sativa Mill.在感染初期,木材的结构特性不会受到影响,但由于这种木材被拒收,其经济价值仍会下降高达 70%。这种疾病由真菌 Fistulina hepatica (Schaeff.) With.这项工作的目的是开发一种有效的检测方法,以评估在丰产期早期是否存在 F. hepatica。通过分子方法分析了总共 72 颗栗子,以确定是否存在肝包虫病,并使用 IML 抗性钻孔机分析了木材的特征。我们计算了 13 项木材质量指标,并使用线性混合模型评估了它们与病原体存在的相关性。我们发现健康树木和受感染树木在四项指数上存在明显差异。我们还设计了一个新的特定指数(栗红褐斑危险指数)来估算被肝蝇疫菌感染的概率。研究结果支持这样的假设,即在轮伐初期,可以通过廉价、快速的机械方法检测到肝包虫的早期存在。这项工作的结果将有助于森林管理者评估 CRS 的发生率,并为进一步开发用于心材腐烂病检测的抗性钻孔技术提供了一种新方法。
{"title":"Early detection of heartwood rot caused by Fistulina hepatica in Castanea sativa productive coppices through low-invasive resistance drilling","authors":"Andreu Meijer,&nbsp;E. Jordán Muñoz-Adalia,&nbsp;Eduard Correal-Mòdol,&nbsp;Carlos Colinas","doi":"10.1007/s00226-024-01616-4","DOIUrl":"10.1007/s00226-024-01616-4","url":null,"abstract":"<div><p>Chestnut Red Stain (CRS) is a heartwood discoloration that widely affects <i>Castanea sativa</i> Mill. productive coppice stands in the northeast of Spain. At the early stages of infection, the structural properties of the wood are not affected, but still its economic value drops up to 70% due to the rejection of this wood. This disease is caused by the fungus <i>Fistulina hepatica</i> (Schaeff.) With. and causes uncertainty to forest managers since the fungal infection is virtually impossible to detect before felling. The objective of this work was to develop an efficient detection method to evaluate the presence of <i>F. hepatica</i> in early stages of productive periods. A total of 72 chestnuts were analyzed through molecular methods to determine the presence of <i>F. hepatica</i> and with an IML resistance drill to characterize their wood. Thirteen wood quality indices were calculated and their correlation with the presence of the pathogen was evaluated using linear mixed models. We found clear differences between healthy and infected trees in four indices. A new specific index (Chestnut Red Stain Danger index) was designed to estimate the probability of infection by <i>F. hepatica</i>. The results support the hypothesis that the early presence of <i>F. hepatica</i> is detectable through inexpensive and fast mechanical methods early in a rotation. The results of this work will help forest managers evaluate the incidence of CRS, as well as it establishes a novel methodology for further development of resistance drilling techniques for heartwood rot detection.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-024-01616-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing the chemistry of artificially degraded Scots pine wood serving as a model of naturally degraded waterlogged wood using1H–13C HSQC NMR 利用 1H-13C HSQC NMR 分析作为自然降解水渍木材模型的人工降解苏格兰松木的化学特征
IF 3.1 2区 农林科学 Q1 FORESTRY Pub Date : 2024-11-13 DOI: 10.1007/s00226-024-01618-2
Daniel J. Yelle, Magdalena Broda

Chemically and biologically degraded Scots pine wood was prepared as a model material for the research on new conservation agents for waterlogged archeological wood. In this study, the model wood was characterized using a 2D1H–13C solution-state NMR technique without derivatization, isolation, or extraction to assess the effect of applied degradation processes on its chemical composition and structure. The results clearly show how the two artificially degraded model wood types are chemically different. Biological decay by the brown-rot fungus Coniophora puteana caused degradation of wood polysaccharides, with heavy depletion in arabinan, mannan, and galactan, along with an increase in the cellulose's reducing ends (i.e., lowering the degree of polymerization) and partial deacetylation of mannan. The fungus cleaved roughly one-fifth of the β-aryl ethers in lignin, leading to a broadening effect on the lignin aromatic unit contours; other lignin sidechains were left untouched. Chemical degradation by NaOH hydrolysis resulted in a depletion in mannan, galactan, and glucan, as well as efficient deacetylation of mannan. It also decreased lignin content, causing changes in its structure; minor β-aryl ether cleavage along with substantial phenylcoumaran cleavage were evident. Detailed knowledge about the chemical composition and structure of artificially degraded model pine wood obtained in this research is necessary to understand the reactivity of these wood types with chemicals used for their conservation. This research will help explain the differences in the stabilization effectiveness observed between these wood types treated during conservation and understand the stabilization mechanisms, thus contributing to developing new, more effective conservation agents for wooden artifacts of Cultural Heritage.

制备了化学和生物降解的苏格兰松木,作为研究水涝考古木材新保护剂的模型材料。在这项研究中,使用 2D1H-13C 溶液态核磁共振技术对模型木材进行了表征,没有进行衍生、分离或提取,以评估应用降解过程对其化学成分和结构的影响。结果清楚地表明了两种人工降解的模型木材在化学成分上的不同。褐腐真菌 Coniophora puteana 的生物降解作用导致木材多糖降解,阿拉伯聚糖、甘露聚糖和半乳聚糖大量减少,纤维素的还原端增加(即聚合度降低),甘露聚糖部分脱乙酰化。真菌裂解了木质素中大约五分之一的 β-芳基醚,导致木质素芳香单元轮廓变宽;其他木质素侧链未受影响。用 NaOH 水解法进行化学降解会导致甘露聚糖、半乳聚糖和葡聚糖的减少,并有效地使甘露聚糖脱乙酰基。它还降低了木质素的含量,使其结构发生了变化;明显可见轻微的β芳基醚裂解和大量的苯基香豆素裂解。要了解这些木材类型与用于保护它们的化学品之间的反应性,就必须详细了解本研究中获得的人工降解松木模型的化学成分和结构。这项研究将有助于解释在保护过程中观察到的这些木材类型在稳定效果上的差异,并了解其稳定机制,从而为开发新的、更有效的文化遗产木质文物保护剂做出贡献。
{"title":"Characterizing the chemistry of artificially degraded Scots pine wood serving as a model of naturally degraded waterlogged wood using1H–13C HSQC NMR","authors":"Daniel J. Yelle,&nbsp;Magdalena Broda","doi":"10.1007/s00226-024-01618-2","DOIUrl":"10.1007/s00226-024-01618-2","url":null,"abstract":"<div><p>Chemically and biologically degraded Scots pine wood was prepared as a model material for the research on new conservation agents for waterlogged archeological wood. In this study, the model wood was characterized using a 2D<sup>1</sup>H–<sup>13</sup>C solution-state NMR technique without derivatization, isolation, or extraction to assess the effect of applied degradation processes on its chemical composition and structure. The results clearly show how the two artificially degraded model wood types are chemically different. Biological decay by the brown-rot fungus <i>Coniophora puteana</i> caused degradation of wood polysaccharides, with heavy depletion in arabinan, mannan, and galactan, along with an increase in the cellulose's reducing ends (i.e., lowering the degree of polymerization) and partial deacetylation of mannan. The fungus cleaved roughly one-fifth of the β-aryl ethers in lignin, leading to a broadening effect on the lignin aromatic unit contours; other lignin sidechains were left untouched. Chemical degradation by NaOH hydrolysis resulted in a depletion in mannan, galactan, and glucan, as well as efficient deacetylation of mannan. It also decreased lignin content, causing changes in its structure; minor β-aryl ether cleavage along with substantial phenylcoumaran cleavage were evident. Detailed knowledge about the chemical composition and structure of artificially degraded model pine wood obtained in this research is necessary to understand the reactivity of these wood types with chemicals used for their conservation. This research will help explain the differences in the stabilization effectiveness observed between these wood types treated during conservation and understand the stabilization mechanisms, thus contributing to developing new, more effective conservation agents for wooden artifacts of Cultural Heritage.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-024-01618-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of plant source selection and chemi-mechanical treatment on the fiber microstructures and mechanical behaviors of nanocellulose films 植物来源选择和化学机械处理对纳米纤维素薄膜的纤维微结构和机械性能的影响
IF 3.1 2区 农林科学 Q1 FORESTRY Pub Date : 2024-11-09 DOI: 10.1007/s00226-024-01613-7
Yangyang Qian, Chunyu Wang, Yijun Liu, Bingfei Shi, Jianqiang Zhang, Yuan Wei, Gang Chen

Cellulose nanofibers (CNFs) were isolated and prepared from six different plant sources (Nordic pine, poplar, cotton, flax, bamboo, and pineapple leaf fibers) through a carboxymethylation-homogenization treatment. The surface morphologies, size distributions, and chemical structures of the CNFs and their microfibers were investigated in detail. Atomic force microscopy (AFM) analysis showed that all kinds of CNFs had uniform diameters of less than 10 nm. However, the length and aspect ratio of CNFs exhibited significant differences due to the differences of anatomical characteristics from pulp species. Among these six nanofibers, the pineapple leaf-based nanofibers had the highest length of ca. 2.21 μm and aspect ratio of ca. 1263. Meanwhile, the resulting pineapple leaf-based nanocellulose film possessed the strongest tensile strength (229.0 ± 9.8 MPa) and toughness (33.9 ± 2.9 MJ/m3). Interestingly, the aspect ratio of cotton nanofibers was only 556, lower than that of bamboo, Nordic pine, and flax nanofibers, but the tensile strength (210.6 ± 4.8 MPa) and toughness (22.4 ± 0.6 MJ/m3) of cotton-based nanocellulose film were second only to the pineapple leaf-based nanocellulose film. The critical reason is that the cotton-based nanocellulose exhibited the highest crystallinity index (76.6%), superior to the other source-based nanocellulose. These results suggested that the high aspect ratio or high crystallinity are responsible for the excellent mechanical strengths of the nanocellulose film. This work sheds light on the preparation and selection of highly spindly or crystalline nonwood nanofibrils, suggesting that the pineapple leaf or cotton nanofibers have great potential as strength additives for nanocomposites.

通过羧甲基化-均质化处理,从六种不同的植物(北欧松、杨树、棉花、亚麻、竹子和菠萝叶纤维)中分离制备了纤维素纳米纤维(CNFs)。详细研究了 CNFs 及其微纤维的表面形态、尺寸分布和化学结构。原子力显微镜(AFM)分析表明,各种 CNFs 的直径均小于 10 纳米。然而,由于不同纸浆品种的解剖特征不同,CNFs 的长度和长宽比表现出显著差异。在这六种纳米纤维中,菠萝叶基纳米纤维的长度最大,约为 2.21 μm,长宽比约为 1263。同时,菠萝叶基纳米纤维素薄膜具有最强的拉伸强度(229.0 ± 9.8 MPa)和韧性(33.9 ± 2.9 MJ/m3)。有趣的是,棉纳米纤维的长宽比仅为 556,低于竹纳米纤维、北欧松纳米纤维和亚麻纳米纤维,但棉基纳米纤维素薄膜的拉伸强度(210.6 ± 4.8 MPa)和韧性(22.4 ± 0.6 MJ/m3)仅次于菠萝叶基纳米纤维素薄膜。关键原因是棉基纳米纤维素的结晶度指数最高(76.6%),优于其他来源的纳米纤维素。这些结果表明,高纵横比或高结晶度是纳米纤维素薄膜具有优异机械强度的原因。这项研究揭示了如何制备和选择高刺或高结晶非木材纳米纤维,表明菠萝叶或棉纳米纤维作为纳米复合材料的强度添加剂具有巨大潜力。
{"title":"Effects of plant source selection and chemi-mechanical treatment on the fiber microstructures and mechanical behaviors of nanocellulose films","authors":"Yangyang Qian,&nbsp;Chunyu Wang,&nbsp;Yijun Liu,&nbsp;Bingfei Shi,&nbsp;Jianqiang Zhang,&nbsp;Yuan Wei,&nbsp;Gang Chen","doi":"10.1007/s00226-024-01613-7","DOIUrl":"10.1007/s00226-024-01613-7","url":null,"abstract":"<div><p>Cellulose nanofibers (CNFs) were isolated and prepared from six different plant sources (Nordic pine, poplar, cotton, flax, bamboo, and pineapple leaf fibers) through a carboxymethylation-homogenization treatment. The surface morphologies, size distributions, and chemical structures of the CNFs and their microfibers were investigated in detail. Atomic force microscopy (AFM) analysis showed that all kinds of CNFs had uniform diameters of less than 10 nm. However, the length and aspect ratio of CNFs exhibited significant differences due to the differences of anatomical characteristics from pulp species. Among these six nanofibers, the pineapple leaf-based nanofibers had the highest length of ca. 2.21 μm and aspect ratio of ca. 1263. Meanwhile, the resulting pineapple leaf-based nanocellulose film possessed the strongest tensile strength (229.0 ± 9.8 MPa) and toughness (33.9 ± 2.9 MJ/m<sup>3</sup>). Interestingly, the aspect ratio of cotton nanofibers was only 556, lower than that of bamboo, Nordic pine, and flax nanofibers, but the tensile strength (210.6 ± 4.8 MPa) and toughness (22.4 ± 0.6 MJ/m<sup>3</sup>) of cotton-based nanocellulose film were second only to the pineapple leaf-based nanocellulose film. The critical reason is that the cotton-based nanocellulose exhibited the highest crystallinity index (76.6%), superior to the other source-based nanocellulose. These results suggested that the high aspect ratio or high crystallinity are responsible for the excellent mechanical strengths of the nanocellulose film. This work sheds light on the preparation and selection of highly spindly or crystalline nonwood nanofibrils, suggesting that the pineapple leaf or cotton nanofibers have great potential as strength additives for nanocomposites.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UV light-induced photodegradation of condensed tannins: obtaining bayberry tannins with different mean polymerization degrees 紫外线诱导缩合单宁的光降解:获得不同平均聚合度的杨梅单宁
IF 3.1 2区 农林科学 Q1 FORESTRY Pub Date : 2024-11-07 DOI: 10.1007/s00226-024-01603-9
Ying Zhou, Yan Zhang, Yuting Zhang, Wenjing Hu, Shuguang Han

Condensed tannins (CTs) characterized by a low degree of polymerization (DP) are recognized to have substantial value for applications across diverse industrial sectors, including food production, pharmaceuticals, and wood adhesive manufacturing. To acquire CTs with a low DP, the depolymerization of bayberry tannins (BTs) through a novel approach utilizing UV light-driven photocatalytic degradation, facilitated by the ultrasonic dispersion of TiO2 nanoparticles was investigated. Under the optimal degradation conditions (a tannin concentration of 6%, a TiO2 nanoparticles loading amount of 0.20%, and a degradation time of 4 h), the study delineated a discernible linear relationship correlating both the degradation time with the formaldehyde reactivity of the photocatalytic degradation products, and the formaldehyde reactivity with the mean degree of polymerization (mDP) of these photocatalytic degradation products. With the establishment of these correlative relationships, it is feasible to systematically control the degradation process of BTs. The photocatalytic degradation process adhered to the following mechanism: The degradation process of BTs is initiated by the cleavage of the C4-C8 bond which, at the incipient stage of degradation, results in the elimination of one gallocatechin gallate unit and one gallocatechin unit, or alternatively, the removal of a gallocatechin dimer. During the advanced stages of degradation, the opening of the C ring gives rise to different derivatives. Upon establishing optimal degradation parameters, it was observed that the primary constituents of the photocatalytic degradation products were dimers. The utilization of photocatalytic degradation exhibited an ability to break down condensed tannins in a manner that is both controllable and in an environmentally friendly way.

以低聚合度(DP)为特征的缩合单宁(CTs)被认为在食品生产、制药和木材粘合剂制造等多个工业领域具有重要的应用价值。为了获得低聚合度的月桂单宁,研究人员采用了一种新方法,即利用紫外线驱动光催化降解,并在 TiO2 纳米粒子超声波分散的促进下,对月桂单宁(BTs)进行解聚。在最佳降解条件下(单宁酸浓度为 6%,TiO2 纳米粒子的负载量为 0.20%,降解时间为 4 小时),研究发现降解时间与光催化降解产物的甲醛反应性以及甲醛反应性与这些光催化降解产物的平均聚合度(mDP)之间存在明显的线性关系。建立了这些相关关系,就可以系统地控制 BTs 的降解过程。光催化降解过程遵循以下机理:BTs 的降解过程由 C4-C8 键的裂解开始,在降解的初级阶段,一个没食子儿茶素没食子酸酯单元和一个没食子儿茶素单元被清除,或者一个没食子儿茶素二聚体被清除。在降解的高级阶段,C 环的打开会产生不同的衍生物。在确定最佳降解参数后,发现光催化降解产物的主要成分是二聚体。利用光催化降解技术能够以可控和环保的方式分解缩合单宁酸。
{"title":"UV light-induced photodegradation of condensed tannins: obtaining bayberry tannins with different mean polymerization degrees","authors":"Ying Zhou,&nbsp;Yan Zhang,&nbsp;Yuting Zhang,&nbsp;Wenjing Hu,&nbsp;Shuguang Han","doi":"10.1007/s00226-024-01603-9","DOIUrl":"10.1007/s00226-024-01603-9","url":null,"abstract":"<div><p>Condensed tannins (CTs) characterized by a low degree of polymerization (DP) are recognized to have substantial value for applications across diverse industrial sectors, including food production, pharmaceuticals, and wood adhesive manufacturing. To acquire CTs with a low DP, the depolymerization of bayberry tannins (BTs) through a novel approach utilizing UV light-driven photocatalytic degradation, facilitated by the ultrasonic dispersion of TiO<sub>2</sub> nanoparticles was investigated. Under the optimal degradation conditions (a tannin concentration of 6%, a TiO<sub>2</sub> nanoparticles loading amount of 0.20%, and a degradation time of 4 h), the study delineated a discernible linear relationship correlating both the degradation time with the formaldehyde reactivity of the photocatalytic degradation products, and the formaldehyde reactivity with the mean degree of polymerization (mDP) of these photocatalytic degradation products. With the establishment of these correlative relationships, it is feasible to systematically control the degradation process of BTs. The photocatalytic degradation process adhered to the following mechanism: The degradation process of BTs is initiated by the cleavage of the C4-C8 bond which, at the incipient stage of degradation, results in the elimination of one gallocatechin gallate unit and one gallocatechin unit, or alternatively, the removal of a gallocatechin dimer. During the advanced stages of degradation, the opening of the C ring gives rise to different derivatives. Upon establishing optimal degradation parameters, it was observed that the primary constituents of the photocatalytic degradation products were dimers. The utilization of photocatalytic degradation exhibited an ability to break down condensed tannins in a manner that is both controllable and in an environmentally friendly way.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tangential veneer fabrication of Fenton-like catalyst for the removal of organic dye from wastewater 用于去除废水中有机染料的类芬顿催化剂切向单板制备技术
IF 3.1 2区 农林科学 Q1 FORESTRY Pub Date : 2024-11-07 DOI: 10.1007/s00226-024-01608-4
Jiani Zhou, Gonggang Liu, Xuebing Yi, Yuanyuan Liao, Chongqing Wang, Shanshan Chang, Jinbo Hu

The exploitation of low-cost, non-fossil membrane materials with flourishing pore structure is essential to complete an organic dye wastewater treatment in Fenton-like catalytic technology. The accessible and scalable veneer functionalized Fenton-like catalysis has been manufactured to decolorize the effluents by a hydrogen peroxide-Mn-based oxides system. The nanocatalyst of Mn-based oxides has been loaded on the veneer surface by the hydrothermal in-situ growth, which could accomplish the coupling of Fenton-like catalyst and membrane technology. Fir and poplar veneers with unique three-dimensional porous structure have been investigated in detail to manifest the respective performance of decolorization during the dye wastewater treatment. This work not only has invented a promising membrane material coupling with Fenton-like catalysis to dispose dye wastewater, but also provides a reference in high-performance membrane design of biomimetic membrane.

要利用 Fenton 类催化技术完成有机染料废水处理,就必须利用具有良好孔隙结构的低成本非化石膜材料。利用过氧化氢-锰基氧化物系统,制造出了易于获得且可扩展的单板功能化 Fenton-like 催化技术,用于对废水进行脱色处理。锰基氧化物的纳米催化剂通过水热原位生长被负载在单板表面,从而实现了芬顿类催化剂与膜技术的耦合。研究人员对具有独特三维多孔结构的杉木和杨木单板进行了详细研究,以显示它们在染料废水处理过程中各自的脱色性能。这项工作不仅为处理染料废水发明了一种前景广阔的与 Fenton-like 催化技术相结合的膜材料,而且为高性能仿生物膜的设计提供了参考。
{"title":"Tangential veneer fabrication of Fenton-like catalyst for the removal of organic dye from wastewater","authors":"Jiani Zhou,&nbsp;Gonggang Liu,&nbsp;Xuebing Yi,&nbsp;Yuanyuan Liao,&nbsp;Chongqing Wang,&nbsp;Shanshan Chang,&nbsp;Jinbo Hu","doi":"10.1007/s00226-024-01608-4","DOIUrl":"10.1007/s00226-024-01608-4","url":null,"abstract":"<div><p>The exploitation of low-cost, non-fossil membrane materials with flourishing pore structure is essential to complete an organic dye wastewater treatment in Fenton-like catalytic technology. The accessible and scalable veneer functionalized Fenton-like catalysis has been manufactured to decolorize the effluents by a hydrogen peroxide-Mn-based oxides system. The nanocatalyst of Mn-based oxides has been loaded on the veneer surface by the hydrothermal in-situ growth, which could accomplish the coupling of Fenton-like catalyst and membrane technology. Fir and poplar veneers with unique three-dimensional porous structure have been investigated in detail to manifest the respective performance of decolorization during the dye wastewater treatment. This work not only has invented a promising membrane material coupling with Fenton-like catalysis to dispose dye wastewater, but also provides a reference in high-performance membrane design of biomimetic membrane.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning the antioxidant and antibacterial properties of lignin by physicochemical modification during sequential acid precipitation from Kraft black liquor 在从牛皮纸黑液中进行连续酸沉淀的过程中,通过物理化学改性调整木质素的抗氧化和抗菌特性
IF 3.1 2区 农林科学 Q1 FORESTRY Pub Date : 2024-11-07 DOI: 10.1007/s00226-024-01612-8
María E. Eugenio, Luisa García-Fuentevilla, Raquel Martín-Sampedro, José I. Santos, Bernd Wicklein, David ibarra

Turning lignin from black liquor waste into value-added bioactive agents is one of the possible routes for improving the sustainability and profitability of lignocellulosic industry. However, due to chemical and structural variability of lignin, it is necessary to isolate specific lignin fractions from black liquor with the purpose to achieve samples with unique chemical and structural characteristics and therefore, specific biological activities. In this study, poplar lignin fractions isolated from Kraft black liquor by sequential acid precipitation at pH´s 7.5, 5 and 2.5 (denoted as P-7.5, P-5 and P-2.5) were characterized according to their physicochemical, antioxidant and antibacterial properties. In general, lignin fractions displayed a wide elimination of lateral chains (aryl-β ether and C–C) and, therefore a high phenolic content and low molecular weight, as the pH sequential precipitation was decreased from 7.5 to 2.5. Moreover, thermal analysis revealed that the P-7.5 lignin fraction showed higher thermal stability than P-2.5 and P-5. In terms of antioxidant activity, the P-7.5 lignin fraction, with a higher S/G ratio and a less oxidized structure compared to P-5 and P-2.5, exhibited higher antioxidant activity. In addition, lower antibacterial effect was observed for all lignin fractions against Escherichia coli compared to that obtained against Staphylococcus aureus. Among them, the P-2.5 and P-5 fractions, with higher phenolic content and lower molecular weight values than P-7.5, showed a greater antibacterial effect against S. aureus.

将黑液废料中的木质素转化为高附加值的生物活性剂,是提高木质纤维素工业可持续性和盈利能力的可行途径之一。然而,由于木质素在化学和结构上的可变性,有必要从黑液中分离出特定的木质素馏分,以获得具有独特化学和结构特征的样品,从而获得特定的生物活性。在本研究中,通过在 pH 值为 7.5、5 和 2.5 的条件下进行连续酸沉淀,从牛皮纸黑液中分离出了杨木素馏分(分别称为 P-7.5、P-5 和 P-2.5),并根据其物理化学、抗氧化和抗菌特性对其进行了表征。一般来说,当 pH 值从 7.5 降到 2.5 时,木质素馏分的横向链(芳基-β 醚和 C-C)被广泛消除,因此酚含量高、分子量低。此外,热分析表明,P-7.5 木质素馏分的热稳定性高于 P-2.5 和 P-5。在抗氧化活性方面,与 P-5 和 P-2.5 相比,P-7.5 木质素馏分的 S/G 比率更高,氧化结构更少,因此具有更高的抗氧化活性。此外,所有木质素馏分对大肠杆菌的抗菌效果均低于对金黄色葡萄球菌的抗菌效果。其中,P-2.5 和 P-5 与 P-7.5 相比,酚含量更高,分子量值更低,对金黄色葡萄球菌的抗菌效果更好。
{"title":"Tuning the antioxidant and antibacterial properties of lignin by physicochemical modification during sequential acid precipitation from Kraft black liquor","authors":"María E. Eugenio,&nbsp;Luisa García-Fuentevilla,&nbsp;Raquel Martín-Sampedro,&nbsp;José I. Santos,&nbsp;Bernd Wicklein,&nbsp;David ibarra","doi":"10.1007/s00226-024-01612-8","DOIUrl":"10.1007/s00226-024-01612-8","url":null,"abstract":"<div><p>Turning lignin from black liquor waste into value-added bioactive agents is one of the possible routes for improving the sustainability and profitability of lignocellulosic industry. However, due to chemical and structural variability of lignin, it is necessary to isolate specific lignin fractions from black liquor with the purpose to achieve samples with unique chemical and structural characteristics and therefore, specific biological activities. In this study, poplar lignin fractions isolated from Kraft black liquor by sequential acid precipitation at pH´s 7.5, 5 and 2.5 (denoted as P-7.5, P-5 and P-2.5) were characterized according to their physicochemical, antioxidant and antibacterial properties. In general, lignin fractions displayed a wide elimination of lateral chains (aryl-β ether and C–C) and, therefore a high phenolic content and low molecular weight, as the pH sequential precipitation was decreased from 7.5 to 2.5. Moreover, thermal analysis revealed that the P-7.5 lignin fraction showed higher thermal stability than P-2.5 and P-5. In terms of antioxidant activity, the P-7.5 lignin fraction, with a higher S/G ratio and a less oxidized structure compared to P-5 and P-2.5, exhibited higher antioxidant activity. In addition, lower antibacterial effect was observed for all lignin fractions against <i>Escherichia coli</i> compared to that obtained against <i>Staphylococcus aureus.</i> Among them, the P-2.5 and P-5 fractions, with higher phenolic content and lower molecular weight values than P-7.5, showed a greater antibacterial effect against <i>S. aureus</i>.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-024-01612-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Wood Science and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1