N. R. Rejin Paul, P. Purnendu Shekhar, Charanjeet Singh, P. Rajesh Kumar
{"title":"SAIF-Cnet: self-attention improved faster convolutional neural network for decentralized blockchain-based key management protocol","authors":"N. R. Rejin Paul, P. Purnendu Shekhar, Charanjeet Singh, P. Rajesh Kumar","doi":"10.1007/s11276-024-03728-y","DOIUrl":null,"url":null,"abstract":"<p>Internet of Things (IoT) devices are an essential part of several aspects of daily life for people. They are utilized in a variety of contexts, including industrial monitoring, environmental sensing, and so on. But, secure communication is the major challenge in the IoT environment. Therefore, a decentralized Blockchain-based Key Management protocol using Levy Flight-Equilibrium Optimization and Self-Attention-based Improved Faster Region-based Convolutional Neural Network (BlkKM) method is proposed to determine stable security in tamper-resistant hardware machine that can protect sensitive secret data in the healthcare field i.e., stored cryptographic keys. The keys are categorized as Key Encryption Keys (KEKs) and Data Encryption Keys (DEKs). The number of the keys is decreased by using Levy Flight- Equilibrium Optimization (LF-EO) as organizing nodes with logical sets. Also, Self-Attention-based Improved Faster Region-based Convolutional Neural Network (SA-based IFRCNN) is used for reordering a set of logical nodes to minimize the number of sets after a node exits the network. Additionally, the system makes use of smart contracts for access control as well as proxy encryption to data encryption. The proposed method is compared with existing techniques to validate the security enhancement performance. The evaluation is performed based on throughput, end-to-end delay, storage overheads, and energy consumption. The experimentation results revealed that the proposed method improved the throughput to 220.52bps and diminished the utilization of energy. A greater degree of memory usage is also decreased by using this technique.</p>","PeriodicalId":23750,"journal":{"name":"Wireless Networks","volume":"296 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11276-024-03728-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Internet of Things (IoT) devices are an essential part of several aspects of daily life for people. They are utilized in a variety of contexts, including industrial monitoring, environmental sensing, and so on. But, secure communication is the major challenge in the IoT environment. Therefore, a decentralized Blockchain-based Key Management protocol using Levy Flight-Equilibrium Optimization and Self-Attention-based Improved Faster Region-based Convolutional Neural Network (BlkKM) method is proposed to determine stable security in tamper-resistant hardware machine that can protect sensitive secret data in the healthcare field i.e., stored cryptographic keys. The keys are categorized as Key Encryption Keys (KEKs) and Data Encryption Keys (DEKs). The number of the keys is decreased by using Levy Flight- Equilibrium Optimization (LF-EO) as organizing nodes with logical sets. Also, Self-Attention-based Improved Faster Region-based Convolutional Neural Network (SA-based IFRCNN) is used for reordering a set of logical nodes to minimize the number of sets after a node exits the network. Additionally, the system makes use of smart contracts for access control as well as proxy encryption to data encryption. The proposed method is compared with existing techniques to validate the security enhancement performance. The evaluation is performed based on throughput, end-to-end delay, storage overheads, and energy consumption. The experimentation results revealed that the proposed method improved the throughput to 220.52bps and diminished the utilization of energy. A greater degree of memory usage is also decreased by using this technique.
期刊介绍:
The wireless communication revolution is bringing fundamental changes to data networking, telecommunication, and is making integrated networks a reality. By freeing the user from the cord, personal communications networks, wireless LAN''s, mobile radio networks and cellular systems, harbor the promise of fully distributed mobile computing and communications, any time, anywhere.
Focusing on the networking and user aspects of the field, Wireless Networks provides a global forum for archival value contributions documenting these fast growing areas of interest. The journal publishes refereed articles dealing with research, experience and management issues of wireless networks. Its aim is to allow the reader to benefit from experience, problems and solutions described.