{"title":"Evaluation of the effects of temperature and cooling rate on the freezing of water in wood using dielectric spectroscopy","authors":"Mengyao Ai, Shan Gao, Xinyu Song, Manxuan Feng","doi":"10.1007/s00226-024-01550-5","DOIUrl":null,"url":null,"abstract":"<div><p>Trees living in subfreezing environments for extended periods are susceptible to brittle fracture and freezing injury, which limits wood quality and final utilization. This study investigates the effects of temperature and cooling rate on the freezing of water in wood using dielectric spectroscopy. Dielectric parameters such as dielectric constant, loss factor, and relaxation strength were observed during cooling process of wood. The effects of subzero temperature and cooling rate on the dielectric parameters were found significant. The dielectric parameters at a slow-cooling rate were generally higher 12%∼143% than those at a fast-cooling rate. During the cooling process from 20°C dropped to − 80°C, the freezing process of water in wood was divided into four stages based on the dielectric parameter change and its impact on wood cell wall was characterized using SEM and DSC methods. The findings of this study provide the basis to explore the freezing behavior of water in wood and further to determine the cause of freezing injury in trees.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 2","pages":"589 - 608"},"PeriodicalIF":3.1000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-024-01550-5","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Trees living in subfreezing environments for extended periods are susceptible to brittle fracture and freezing injury, which limits wood quality and final utilization. This study investigates the effects of temperature and cooling rate on the freezing of water in wood using dielectric spectroscopy. Dielectric parameters such as dielectric constant, loss factor, and relaxation strength were observed during cooling process of wood. The effects of subzero temperature and cooling rate on the dielectric parameters were found significant. The dielectric parameters at a slow-cooling rate were generally higher 12%∼143% than those at a fast-cooling rate. During the cooling process from 20°C dropped to − 80°C, the freezing process of water in wood was divided into four stages based on the dielectric parameter change and its impact on wood cell wall was characterized using SEM and DSC methods. The findings of this study provide the basis to explore the freezing behavior of water in wood and further to determine the cause of freezing injury in trees.
期刊介绍:
Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.