{"title":"Aging Reliability Compact Modeling of Trap Effects in Power GaN HEMTs","authors":"Yanfeng Ma;Sheng Li;Mengli Liu;Weihao Lu;Mingfei Li;Siyang Liu;Long Zhang;Jiaxing Wei;Lanlan Yang;Weifeng Sun;Jiaxin Sun","doi":"10.1109/TDMR.2024.3387573","DOIUrl":null,"url":null,"abstract":"This article proposes an aging reliability compact model with high accuracy to simulate trap effects after long-term aging in power Gallium Nitride (GaN) based high electron mobility transistors (HEMTs). Dynamic on-state resistance \n<inline-formula> <tex-math>$(R_{\\mathrm{ on,dy}})$ </tex-math></inline-formula>\n caused by trap effects is taken as an example to deliver the aging reliability modeling concepts and flows. Based on the mechanism of trap effects and accelerated-stress experiments, the variation model of electron mobility has been established, so that the degradation of \n<inline-formula> <tex-math>$R_{\\mathrm{ on,dy}}$ </tex-math></inline-formula>\n after aging can be predicted. The structure of the advanced SPICE model for GaN HEMT (ASM-HEMT) is modified to integrate the mobility variation model into SPICE for convenient usage. In addition, the accuracy of the proposed model has been verified, and the RMSE value between measured data and simulated data under long-term high temperature reverse bias stress conditions is only 1.68%, thus the hazard of the power system caused by traps can be discovered and avoided in advance.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 2","pages":"313-322"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10497162/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article proposes an aging reliability compact model with high accuracy to simulate trap effects after long-term aging in power Gallium Nitride (GaN) based high electron mobility transistors (HEMTs). Dynamic on-state resistance
$(R_{\mathrm{ on,dy}})$
caused by trap effects is taken as an example to deliver the aging reliability modeling concepts and flows. Based on the mechanism of trap effects and accelerated-stress experiments, the variation model of electron mobility has been established, so that the degradation of
$R_{\mathrm{ on,dy}}$
after aging can be predicted. The structure of the advanced SPICE model for GaN HEMT (ASM-HEMT) is modified to integrate the mobility variation model into SPICE for convenient usage. In addition, the accuracy of the proposed model has been verified, and the RMSE value between measured data and simulated data under long-term high temperature reverse bias stress conditions is only 1.68%, thus the hazard of the power system caused by traps can be discovered and avoided in advance.
期刊介绍:
The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.