Optimization of Micro Heat Sink with Repetitive pattern of Obstacles for Electronic Cooling Applications

IF 1.7 4区 工程技术 Q3 THERMODYNAMICS Heat Transfer Research Pub Date : 2024-04-01 DOI:10.1615/heattransres.2024049821
Digvijay Ronge, Prashant Pawar
{"title":"Optimization of Micro Heat Sink with Repetitive pattern of Obstacles for Electronic Cooling Applications","authors":"Digvijay Ronge, Prashant Pawar","doi":"10.1615/heattransres.2024049821","DOIUrl":null,"url":null,"abstract":"Micro Heat Sinks (MHS) are becoming integral part of microelectronics nowadays because of their ability to cool the tiny components which generate high heat flux. In this study, an electronic chip with a high heat flux of 100 W/cm² is cooled with the help of a MHS device which has repetitive patterns of obstacles of various shapes in the flow of cooling medium. Numerical modelling of all MHSs were performed using a Computational Fluid Dynamics (CFD) solver and the pattern, which gives better thermo-hydraulic performance, was selected for optimization. A parametric study was performed with various obstacle sizes, distance between obstacles and flow rate of cooling medium for maximum temperature of chip and pressure drop. Regression analysis was carried out with Response Surface Method (RSM) between these three design variables and two objective functions, viz. thermal resistance (Rth) and pumping power (Pp). A multi-objective optimization of the MHS was performed using genetic algorithm (GA) and pareto-optimal solutions were obtained. An optimal design was fabricated and the cooling experiment was carried out under optimal flow conditions. The repetitive pattern of obstacles increases the conjugate heat transfer area and helps in improving thermal performance.","PeriodicalId":50408,"journal":{"name":"Heat Transfer Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/heattransres.2024049821","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Micro Heat Sinks (MHS) are becoming integral part of microelectronics nowadays because of their ability to cool the tiny components which generate high heat flux. In this study, an electronic chip with a high heat flux of 100 W/cm² is cooled with the help of a MHS device which has repetitive patterns of obstacles of various shapes in the flow of cooling medium. Numerical modelling of all MHSs were performed using a Computational Fluid Dynamics (CFD) solver and the pattern, which gives better thermo-hydraulic performance, was selected for optimization. A parametric study was performed with various obstacle sizes, distance between obstacles and flow rate of cooling medium for maximum temperature of chip and pressure drop. Regression analysis was carried out with Response Surface Method (RSM) between these three design variables and two objective functions, viz. thermal resistance (Rth) and pumping power (Pp). A multi-objective optimization of the MHS was performed using genetic algorithm (GA) and pareto-optimal solutions were obtained. An optimal design was fabricated and the cooling experiment was carried out under optimal flow conditions. The repetitive pattern of obstacles increases the conjugate heat transfer area and helps in improving thermal performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化电子冷却应用中具有重复障碍物模式的微型散热器
微型散热器(MHS)能够冷却产生高热流量的微小元件,因此已成为当今微电子技术不可或缺的一部分。在这项研究中,一个热流量高达 100 W/cm² 的电子芯片借助 MHS 设备进行冷却。使用计算流体动力学(CFD)求解器对所有 MHS 进行了数值建模,并选择了热液压性能更好的模式进行优化。对各种障碍物的尺寸、障碍物之间的距离和冷却介质的流速进行了参数研究,以获得芯片的最高温度和压降。在这三个设计变量和两个目标函数(即热阻 (Rth) 和泵功率 (Pp))之间采用响应面法 (RSM) 进行了回归分析。利用遗传算法(GA)对 MHS 进行了多目标优化,并获得了帕累托最优解。制造出了最佳设计,并在最佳流动条件下进行了冷却实验。障碍物的重复模式增加了共轭传热面积,有助于提高热性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Heat Transfer Research
Heat Transfer Research 工程技术-热力学
CiteScore
3.10
自引率
23.50%
发文量
102
审稿时长
13.2 months
期刊介绍: Heat Transfer Research (ISSN1064-2285) presents archived theoretical, applied, and experimental papers selected globally. Selected papers from technical conference proceedings and academic laboratory reports are also published. Papers are selected and reviewed by a group of expert associate editors, guided by a distinguished advisory board, and represent the best of current work in the field. Heat Transfer Research is published under an exclusive license to Begell House, Inc., in full compliance with the International Copyright Convention. Subjects covered in Heat Transfer Research encompass the entire field of heat transfer and relevant areas of fluid dynamics, including conduction, convection and radiation, phase change phenomena including boiling and solidification, heat exchanger design and testing, heat transfer in nuclear reactors, mass transfer, geothermal heat recovery, multi-scale heat transfer, heat and mass transfer in alternative energy systems, and thermophysical properties of materials.
期刊最新文献
Numerical analysis of thermoacoustic heat pump driving by prime mover Evaluation of the performance of using R410A and R463A in a vapor compression refrigeration system: Energetic-exergetic analysis and Environmental Impact Index (EII) assessmen COOLING EFFECT OF DIFFERENT TYPES OF MATERIALS IN AN AVIONICS SYSTEM An investigation over the influence of a radiant thermal mat’s dimensions on its local and average convective and radiative heat transfer characteristics Comparative experimental investigation on viscosity and stability of W/EG based non-Newtonian hybrid nanofluids for the heat transfer applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1