{"title":"Comparative experimental investigation on viscosity and stability of W/EG based non-Newtonian hybrid nanofluids for the heat transfer applications","authors":"Ayush Painuly, Niraj Mishra, Prabhakar Zainith, Gaurav Joshi","doi":"10.1615/heattransres.2024053694","DOIUrl":null,"url":null,"abstract":"This study investigates the stability and rheological properties of water-ethylene glycol (W/EG) based non-Newtonian hybrid nanofluids incorporating SiC, Al2O3 and MWCNT nanoparticles. A two-step method was employed to prepare the hybrid nanofluids, using X-ray diffraction (XRD) and scanning electron microscopy (SEM) for the characterization of the nanoparticles. Stability assessment showed that Al2O3-MWCNT hybrid nanofluids are more optically stable than SiC-MWCNT as W/EG based Al2O3-MWCNT hybrid nanofluids took longer to sediment. Al2O3-MWCNT hybrid nanofluids exhibited superior stability in visual tests over a period of 19–21 days while SiC-MWCNT nanofluid took 12-14 days to sediment. Rheological analysis showed that increasing particle concentration increased the viscosity by 3.56 and 3.98 times for SiC-MWCNT and Al2O3-MWCNT hybrid nanofluids, respectively, compared to the base fluid. In contrast, increasing the temperature from 25 °C to 55 °C decreased the shear stress by 72.8% and 64.8% for SiC-MWCNT and Al2O3-MWCNT hybrid nanofluids respectively. Furthermore, the viscosity versus shear rate trends indicated a pseudoplastic or shear-thinning nature for both hybrid nanofluids with particle volume fraction above or equal to 0.1%.","PeriodicalId":50408,"journal":{"name":"Heat Transfer Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/heattransres.2024053694","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the stability and rheological properties of water-ethylene glycol (W/EG) based non-Newtonian hybrid nanofluids incorporating SiC, Al2O3 and MWCNT nanoparticles. A two-step method was employed to prepare the hybrid nanofluids, using X-ray diffraction (XRD) and scanning electron microscopy (SEM) for the characterization of the nanoparticles. Stability assessment showed that Al2O3-MWCNT hybrid nanofluids are more optically stable than SiC-MWCNT as W/EG based Al2O3-MWCNT hybrid nanofluids took longer to sediment. Al2O3-MWCNT hybrid nanofluids exhibited superior stability in visual tests over a period of 19–21 days while SiC-MWCNT nanofluid took 12-14 days to sediment. Rheological analysis showed that increasing particle concentration increased the viscosity by 3.56 and 3.98 times for SiC-MWCNT and Al2O3-MWCNT hybrid nanofluids, respectively, compared to the base fluid. In contrast, increasing the temperature from 25 °C to 55 °C decreased the shear stress by 72.8% and 64.8% for SiC-MWCNT and Al2O3-MWCNT hybrid nanofluids respectively. Furthermore, the viscosity versus shear rate trends indicated a pseudoplastic or shear-thinning nature for both hybrid nanofluids with particle volume fraction above or equal to 0.1%.
期刊介绍:
Heat Transfer Research (ISSN1064-2285) presents archived theoretical, applied, and experimental papers selected globally. Selected papers from technical conference proceedings and academic laboratory reports are also published. Papers are selected and reviewed by a group of expert associate editors, guided by a distinguished advisory board, and represent the best of current work in the field. Heat Transfer Research is published under an exclusive license to Begell House, Inc., in full compliance with the International Copyright Convention. Subjects covered in Heat Transfer Research encompass the entire field of heat transfer and relevant areas of fluid dynamics, including conduction, convection and radiation, phase change phenomena including boiling and solidification, heat exchanger design and testing, heat transfer in nuclear reactors, mass transfer, geothermal heat recovery, multi-scale heat transfer, heat and mass transfer in alternative energy systems, and thermophysical properties of materials.