On the Performance of MMSE Channel Estimation in Massive MIMO Systems over Spatially Correlated Rician Fading Channels

Jorge F. Arellano, Carlos Daniel Altamirano, Henry Ramiro Carvajal Mora, Nathaly Verónica Orozco Garzón, Fernando Darío Almeida García
{"title":"On the Performance of MMSE Channel Estimation in Massive MIMO Systems over Spatially Correlated Rician Fading Channels","authors":"Jorge F. Arellano, Carlos Daniel Altamirano, Henry Ramiro Carvajal Mora, Nathaly Verónica Orozco Garzón, Fernando Darío Almeida García","doi":"10.1155/2024/5445725","DOIUrl":null,"url":null,"abstract":"Massive multiple-input-multiple-output (M-MIMO) offers remarkable advantages in terms of spectral, energy, and hardware efficiency for future wireless systems. However, its performance relies on the accuracy of channel state information (CSI) available at the transceivers. This makes channel estimation pivotal in the context of M-MIMO systems. Prior research has focused on evaluating channel estimation methods under the assumption of spatially uncorrelated fading channel models. In this study, we evaluate the performance of the minimum-mean-square-error (MMSE) estimator in terms of the normalized mean square error (NMSE) in the uplink of M-MIMO systems over spatially correlated Rician fading. The NMSE allows for easy comparison of different M-MIMO configurations, serving as a relative performance indicator. Besides, it is an advantageous metric due to its normalization, scale invariance, and consistent performance indication across diverse scenarios. In the system model, we assume imperfections in channel estimation and that the random angles in the correlation model follow a Gaussian distribution. For this scenario, we derive an accurate closed-form expression for calculating the NMSE, which is validated via Monte-Carlo simulations. Our numerical results reveal that as the Rician <span><svg height=\"9.25986pt\" style=\"vertical-align:-0.2455397pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.01432 13.2658 9.25986\" width=\"13.2658pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>-</span>factor decreases, approaching Rayleigh fading conditions, the NMSE improves. Additionally, spatial correlation and a reduction in the antenna array interelement spacing lead to a reduction in NMSE, further enhancing the overall system performance.","PeriodicalId":501499,"journal":{"name":"Wireless Communications and Mobile Computing","volume":"2017 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Communications and Mobile Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/5445725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Massive multiple-input-multiple-output (M-MIMO) offers remarkable advantages in terms of spectral, energy, and hardware efficiency for future wireless systems. However, its performance relies on the accuracy of channel state information (CSI) available at the transceivers. This makes channel estimation pivotal in the context of M-MIMO systems. Prior research has focused on evaluating channel estimation methods under the assumption of spatially uncorrelated fading channel models. In this study, we evaluate the performance of the minimum-mean-square-error (MMSE) estimator in terms of the normalized mean square error (NMSE) in the uplink of M-MIMO systems over spatially correlated Rician fading. The NMSE allows for easy comparison of different M-MIMO configurations, serving as a relative performance indicator. Besides, it is an advantageous metric due to its normalization, scale invariance, and consistent performance indication across diverse scenarios. In the system model, we assume imperfections in channel estimation and that the random angles in the correlation model follow a Gaussian distribution. For this scenario, we derive an accurate closed-form expression for calculating the NMSE, which is validated via Monte-Carlo simulations. Our numerical results reveal that as the Rician -factor decreases, approaching Rayleigh fading conditions, the NMSE improves. Additionally, spatial correlation and a reduction in the antenna array interelement spacing lead to a reduction in NMSE, further enhancing the overall system performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论大规模多输入多输出(Massive MIMO)系统在空间相关的里杉衰减信道上的 MMSE 信道估计性能
大规模多输入多输出(M-MIMO)在频谱、能源和硬件效率方面为未来的无线系统提供了显著优势。然而,其性能取决于收发器上可用信道状态信息(CSI)的准确性。因此,信道估计在 M-MIMO 系统中至关重要。之前的研究主要集中在空间不相关衰落信道模型假设下的信道估计方法评估。在本研究中,我们用归一化均方误差(NMSE)评估了 M-MIMO 系统上行链路在空间相关里氏衰减情况下最小均方误差(MMSE)估计器的性能。归一化均方误差便于比较不同的 M-MIMO 配置,可作为相对性能指标。此外,NMSE 还具有归一化、规模不变性以及在不同场景下性能指示一致等优点。在系统模型中,我们假设信道估计不完善,相关模型中的随机角度遵循高斯分布。在这种情况下,我们得出了计算 NMSE 的精确闭式表达式,并通过蒙特卡罗模拟进行了验证。我们的数值结果表明,随着里氏因子的减小,接近瑞利衰落条件时,NMSE 将得到改善。此外,空间相关性和天线阵列单元间距的减小也会导致 NMSE 的减小,从而进一步提高系统的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improvement of Apriori Algorithm Using Parallelization Technique on Multi-CPU and GPU Topology Hybrid Agent-Based Load-Balancing Approach Used in an IaaS Platform Hierarchical Cross Traffic Scheduling Based on Time-Aware Shapers for Mobile Time-Sensitive Fronthaul Network On the Performance of MMSE Channel Estimation in Massive MIMO Systems over Spatially Correlated Rician Fading Channels Analysis of Filtered Multicarrier Modulation Techniques Using Different Windows for 5G and Beyond Wireless Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1