Anh Q.K. Nguyen, Thi K.N. Tran, Bich N. Hoang, Ngo T.C. Quyen, Tai T. Huynh, Nguyen P. Yen, Bich N. Nguyen
{"title":"Effect of calcination temperatures on optical and magnetic properties of FeWO4 nanoparticles","authors":"Anh Q.K. Nguyen, Thi K.N. Tran, Bich N. Hoang, Ngo T.C. Quyen, Tai T. Huynh, Nguyen P. Yen, Bich N. Nguyen","doi":"10.2478/pjct-2024-0003","DOIUrl":null,"url":null,"abstract":"Calcination temperature is a crucial parameter that can be easily controlled to induce a change in material properties. Herein, iron tungstate (FeWO<jats:sub>4</jats:sub>) was synthesized via a hydrothermal method using iron(II) sulfate heptahydrate and sodium tungstate dihydrate as precursors and calcined at the temperature between 300 <jats:sup>o</jats:sup>C and 700 <jats:sup>o</jats:sup>C. With increasing calcination temperature, the saturation magnetization of FeWO<jats:sub>4</jats:sub> nanoparticles decreased from 6.6 emu/g for FeWO<jats:sub>4</jats:sub> to 0.4 emu/g for FeWO4_700, whereas their band gaps increased from 1.95 eV for FeWO<jats:sub>4</jats:sub> to 2.20 eV for FeWO4_700. More crystallinity and crystal defects, and morphological changes at higher calcination temperatures contributed to varying magneto-optical properties of FeWO<jats:sub>4</jats:sub> nanoparticles.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"51 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Chemical Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pjct-2024-0003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Calcination temperature is a crucial parameter that can be easily controlled to induce a change in material properties. Herein, iron tungstate (FeWO4) was synthesized via a hydrothermal method using iron(II) sulfate heptahydrate and sodium tungstate dihydrate as precursors and calcined at the temperature between 300 oC and 700 oC. With increasing calcination temperature, the saturation magnetization of FeWO4 nanoparticles decreased from 6.6 emu/g for FeWO4 to 0.4 emu/g for FeWO4_700, whereas their band gaps increased from 1.95 eV for FeWO4 to 2.20 eV for FeWO4_700. More crystallinity and crystal defects, and morphological changes at higher calcination temperatures contributed to varying magneto-optical properties of FeWO4 nanoparticles.
期刊介绍:
Polish Journal of Chemical Technology is a peer-reviewed, international journal devoted to fundamental and applied chemistry, as well as chemical engineering and biotechnology research. It has a very broad scope but favors interdisciplinary research that bring chemical technology together with other disciplines. All authors receive very fast and comprehensive peer-review. Additionally, every published article is promoted to researchers working in the same field.