Seebeck Effect of Dirac Electrons in Organic Conductors under Hydrostatic Pressure Using a Tight-Binding Model Derived from First Principles

IF 1.5 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Journal of the Physical Society of Japan Pub Date : 2024-04-08 DOI:10.7566/jpsj.93.054704
Yoshikazu Suzumura, Takao Tsumuraya, Masao Ogata
{"title":"Seebeck Effect of Dirac Electrons in Organic Conductors under Hydrostatic Pressure Using a Tight-Binding Model Derived from First Principles","authors":"Yoshikazu Suzumura, Takao Tsumuraya, Masao Ogata","doi":"10.7566/jpsj.93.054704","DOIUrl":null,"url":null,"abstract":"The Seebeck coefficient is examined for two-dimensional Dirac electrons in the three-quarter filled organic conductor <i>α</i>-(BEDT-TTF)<sub>2</sub>I<sub>3</sub> [BEDT-TTF denotes bis(ethylenedithio)tetrathiafulvalene] under hydrostatic pressure, where the Seebeck coefficient <i>S</i> is proportional to the ratio of the thermoelectric conductivity <i>L</i><sub>12</sub> to the electrical conductivity <i>L</i><sub>11</sub>, i.e., <i>S</i> = <i>L</i><sub>12</sub>/<i>TL</i><sub>11</sub> with <i>T</i> being the temperature. We present an improved tight-binding model in two dimensions with transfer energies determined from first-principles density functional theory calculations with an experimentally determined crystal structure. The <i>T</i> dependence of the Seebeck coefficient is calculated by adding impurity and electron–phonon scatterings. Noting a zero-gap state due to the Dirac cone, which results in a competition from contributions between the conduction and valence bands, we show positive <i>S<sub>x</sub></i> and <i>S<sub>y</sub></i> at finite temperatures and analyze them in terms of spectral conductivity. The relevance of the calculated <i>S<sub>x</sub></i> (perpendicular to the molecular stacking axis) to the experiment is discussed.","PeriodicalId":17304,"journal":{"name":"Journal of the Physical Society of Japan","volume":"67 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Physical Society of Japan","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.7566/jpsj.93.054704","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Seebeck coefficient is examined for two-dimensional Dirac electrons in the three-quarter filled organic conductor α-(BEDT-TTF)2I3 [BEDT-TTF denotes bis(ethylenedithio)tetrathiafulvalene] under hydrostatic pressure, where the Seebeck coefficient S is proportional to the ratio of the thermoelectric conductivity L12 to the electrical conductivity L11, i.e., S = L12/TL11 with T being the temperature. We present an improved tight-binding model in two dimensions with transfer energies determined from first-principles density functional theory calculations with an experimentally determined crystal structure. The T dependence of the Seebeck coefficient is calculated by adding impurity and electron–phonon scatterings. Noting a zero-gap state due to the Dirac cone, which results in a competition from contributions between the conduction and valence bands, we show positive Sx and Sy at finite temperatures and analyze them in terms of spectral conductivity. The relevance of the calculated Sx (perpendicular to the molecular stacking axis) to the experiment is discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用从第一原理推导出的紧密结合模型研究静水压力下有机导体中狄拉克电子的塞贝克效应
我们研究了静水压力下四分之三填充有机导体 α-(BEDT-TTF)2I3 [BEDT-TTF 表示双(亚乙二硫基)四硫代富勒烯] 中二维狄拉克电子的塞贝克系数,其中塞贝克系数 S 与热电导率 L12 与电导率 L11 之比成正比,即 S = L12/TL11,T 为温度。我们提出了一种改进的二维紧密结合模型,其传递能量是通过第一原理密度泛函理论计算和实验确定的晶体结构确定的。通过添加杂质和电子-声子散射,计算出了塞贝克系数的 T 依赖性。我们注意到由于狄拉克锥的存在,导带和价带之间的贡献会产生竞争,从而导致零间隙状态,因此我们在有限温度下显示出正的 Sx 和 Sy,并从光谱电导率的角度对它们进行了分析。我们还讨论了计算出的 Sx(垂直于分子堆积轴)与实验的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
17.60%
发文量
325
审稿时长
3 months
期刊介绍: The papers published in JPSJ should treat fundamental and novel problems of physics scientifically and logically, and contribute to the development in the understanding of physics. The concrete objects are listed below. Subjects Covered JPSJ covers all the fields of physics including (but not restricted to) Elementary particles and fields Nuclear physics Atomic and Molecular Physics Fluid Dynamics Plasma physics Physics of Condensed Matter Metal, Superconductor, Semiconductor, Magnetic Materials, Dielectric Materials Physics of Nanoscale Materials Optics and Quantum Electronics Physics of Complex Systems Mathematical Physics Chemical physics Biophysics Geophysics Astrophysics.
期刊最新文献
A Study of Oscillating Magnetic Fields with Neutron Spin Interferometry Soft Mode Behavior Near the Critical Endpoint of a Nematic Liquid Crystal with Positive Dielectric Anisotropy Effective Mass and Field-Reinforced Superconductivity in Uranium Compounds Equilibrium Flow Structure with Multiple Ion Species in Magnetically Confined Plasmas of an Arbitrary Aspect Ratio Microscopic Derivation of Transition-state Theory for Complex Quantum Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1