{"title":"Microscopic Derivation of Transition-state Theory for Complex Quantum Systems","authors":"Kouichi Hagino, George F. Bertsch","doi":"10.7566/jpsj.93.064003","DOIUrl":null,"url":null,"abstract":"The decay of quantum complex systems through a potential barrier is often described with transition-state theory, also known as RRKM theory in chemistry. Here we derive the basic formula for transition-state theory based on a generic Hamiltonian as might be constructed in a configuration-interaction basis. Two reservoirs of random Hamiltonians from Gaussian orthogonal ensembles are coupled to intermediate states representing the transition states at a barrier. Under the condition that the decay of the reservoirs to open channels is large, an analytic formula for reaction rates is derived. The transition states act as independent Breit–Wigner resonances which contribute additively to the total transition probability, as is well known for electronic conductance through resonant tunneling states. It is also found that the transition probability is independent of the decay properties of the states in the second reservoir over a wide range of decay widths.","PeriodicalId":17304,"journal":{"name":"Journal of the Physical Society of Japan","volume":"52 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Physical Society of Japan","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.7566/jpsj.93.064003","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The decay of quantum complex systems through a potential barrier is often described with transition-state theory, also known as RRKM theory in chemistry. Here we derive the basic formula for transition-state theory based on a generic Hamiltonian as might be constructed in a configuration-interaction basis. Two reservoirs of random Hamiltonians from Gaussian orthogonal ensembles are coupled to intermediate states representing the transition states at a barrier. Under the condition that the decay of the reservoirs to open channels is large, an analytic formula for reaction rates is derived. The transition states act as independent Breit–Wigner resonances which contribute additively to the total transition probability, as is well known for electronic conductance through resonant tunneling states. It is also found that the transition probability is independent of the decay properties of the states in the second reservoir over a wide range of decay widths.
期刊介绍:
The papers published in JPSJ should treat fundamental and novel problems of physics scientifically and logically, and contribute to the development in the understanding of physics. The concrete objects are listed below.
Subjects Covered
JPSJ covers all the fields of physics including (but not restricted to)
Elementary particles and fields
Nuclear physics
Atomic and Molecular Physics
Fluid Dynamics
Plasma physics
Physics of Condensed Matter
Metal, Superconductor, Semiconductor, Magnetic Materials, Dielectric Materials
Physics of Nanoscale Materials
Optics and Quantum Electronics
Physics of Complex Systems
Mathematical Physics
Chemical physics
Biophysics
Geophysics
Astrophysics.