Pathogen- and host-directed pharmacologic strategies for control of Vairimorpha (Nosema) spp. infection in honey bees

IF 2.1 4区 生物学 Q3 MICROBIOLOGY Journal of Eukaryotic Microbiology Pub Date : 2024-04-04 DOI:10.1111/jeu.13026
Parker Parrella, Annabelle B. Elikan, Jonathan W. Snow
{"title":"Pathogen- and host-directed pharmacologic strategies for control of Vairimorpha (Nosema) spp. infection in honey bees","authors":"Parker Parrella,&nbsp;Annabelle B. Elikan,&nbsp;Jonathan W. Snow","doi":"10.1111/jeu.13026","DOIUrl":null,"url":null,"abstract":"<p>Microsporidia are obligate intracellular parasites of the Fungal Kingdom that cause widespread infections in nature, with important effects on invertebrates involved in food production systems. The two microsporidian species <i>Vairimorpha (Nosema) ceranae</i> (and the less common <i>Vairimorpha (Nosema) apis</i>) can cause individual disease in honey bees and contribute to colony collapse. The efficacy, safety, and availability of fumagillin, the only drug currently approved to treat microsporidia infection in bees, is uncertain. In this review, we will discuss some of the most promising alternative strategies for the mitigation of <i>Vairimorpha</i> spp. with an emphasis on infection by <i>V. ceranae</i>, now the dominant species infecting bees. We will focus on pharmacologic interventions where the mechanism of action is known and examine both pathogen-directed and host-directed approaches. As limiting toxicity to host cells has been especially emphasized in treating bees that are already facing numerous stressors, strategies that disrupt pathogen-specific targets may be especially advantageous. Therefore, efforts to increase the knowledge and tools for facilitating the discovery of such targets and pharmacologic agents directed against them should be prioritized.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":"71 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Eukaryotic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jeu.13026","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microsporidia are obligate intracellular parasites of the Fungal Kingdom that cause widespread infections in nature, with important effects on invertebrates involved in food production systems. The two microsporidian species Vairimorpha (Nosema) ceranae (and the less common Vairimorpha (Nosema) apis) can cause individual disease in honey bees and contribute to colony collapse. The efficacy, safety, and availability of fumagillin, the only drug currently approved to treat microsporidia infection in bees, is uncertain. In this review, we will discuss some of the most promising alternative strategies for the mitigation of Vairimorpha spp. with an emphasis on infection by V. ceranae, now the dominant species infecting bees. We will focus on pharmacologic interventions where the mechanism of action is known and examine both pathogen-directed and host-directed approaches. As limiting toxicity to host cells has been especially emphasized in treating bees that are already facing numerous stressors, strategies that disrupt pathogen-specific targets may be especially advantageous. Therefore, efforts to increase the knowledge and tools for facilitating the discovery of such targets and pharmacologic agents directed against them should be prioritized.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
控制蜜蜂Vairimorpha(Nosema)属感染的病原体和宿主定向药理策略
小孢子虫是真菌王国中的细胞内寄生虫,在自然界中引起广泛感染,对食物生产系统中的无脊椎动物有重要影响。两种微孢子虫 Vairimorpha (Nosema) ceranae(和不太常见的 Vairimorpha (Nosema) apis)可导致蜜蜂个体发病,并造成蜂群崩溃。目前唯一被批准用于治疗蜜蜂小孢子虫感染的药物福马吉林的疗效、安全性和可用性尚不确定。在这篇综述中,我们将讨论一些最有前景的替代策略,以减轻Vairimorpha属小孢子虫的感染,重点是V. ceranae的感染,它是目前感染蜜蜂的主要种类。我们将重点关注已知作用机制的药物干预措施,并研究病原体导向和宿主导向两种方法。在治疗已经面临众多压力的蜜蜂时,限制对宿主细胞的毒性尤其受到重视,因此破坏病原体特异性靶点的策略可能特别有利。因此,应优先努力增加知识和工具,以促进发现这些靶点和针对这些靶点的药剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
4.50%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Journal of Eukaryotic Microbiology publishes original research on protists, including lower algae and fungi. Articles are published covering all aspects of these organisms, including their behavior, biochemistry, cell biology, chemotherapy, development, ecology, evolution, genetics, molecular biology, morphogenetics, parasitology, systematics, and ultrastructure.
期刊最新文献
Retention of blue-green cryptophyte organelles by Mesodinium rubrum and their effects on photophysiology and growth. Effect of protease inhibitors on the intraerythrocytic development of Babesia microti and Babesia duncani, the causative agents of human babesiosis. Fine structural features of the free-living stages of Amyloodinium ocellatum (Dinoflagellata, Thoracosphaeraceae): A marine fish ectoparasite. Broad-range necrophytophagy in the flagellate Orciraptor agilis (Viridiraptoridae, Cercozoa) and the underappreciated role of scavenging among protists. Functional stress responses in Glaucophyta: Evidence of ethylene and abscisic acid functions in Cyanophora paradoxa.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1