{"title":"Microseismic Event Recognition and Transfer Learning Based on Convolutional Neural Network and Attention Mechanisms","authors":"","doi":"10.1007/s11770-024-1058-y","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Microseismic monitoring technology is widely used in tunnel and coal mine safety production. For signals generated by ultra-weak microseismic events, traditional sensors encounter limitations in terms of detection sensitivity. Given the complex engineering environment, automatic multi-classification of microseismic data is highly required. In this study, we use acceleration sensors to collect signals and combine the improved Visual Geometry Group with a convolutional block attention module to obtain a new network structure, termed CNN_BAM, for automatic classification and identification of microseismic events. We use the dataset collected from the Hanjiang-to-Weihe River Diversion Project to train and validate the network model. Results show that the CNN_BAM model exhibits good feature extraction ability, achieving a recognition accuracy of 99.29%, surpassing all its counterparts. The stability and accuracy of the classification algorithm improve remarkably. In addition, through fine-tuning and migration to the Pan II Mine Project, the network demonstrates reliable generalization performance. This outcome reflects its adaptability across different projects and promising application prospects.</p>","PeriodicalId":55500,"journal":{"name":"Applied Geophysics","volume":"3 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11770-024-1058-y","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Microseismic monitoring technology is widely used in tunnel and coal mine safety production. For signals generated by ultra-weak microseismic events, traditional sensors encounter limitations in terms of detection sensitivity. Given the complex engineering environment, automatic multi-classification of microseismic data is highly required. In this study, we use acceleration sensors to collect signals and combine the improved Visual Geometry Group with a convolutional block attention module to obtain a new network structure, termed CNN_BAM, for automatic classification and identification of microseismic events. We use the dataset collected from the Hanjiang-to-Weihe River Diversion Project to train and validate the network model. Results show that the CNN_BAM model exhibits good feature extraction ability, achieving a recognition accuracy of 99.29%, surpassing all its counterparts. The stability and accuracy of the classification algorithm improve remarkably. In addition, through fine-tuning and migration to the Pan II Mine Project, the network demonstrates reliable generalization performance. This outcome reflects its adaptability across different projects and promising application prospects.
期刊介绍:
The journal is designed to provide an academic realm for a broad blend of academic and industry papers to promote rapid communication and exchange of ideas between Chinese and world-wide geophysicists.
The publication covers the applications of geoscience, geophysics, and related disciplines in the fields of energy, resources, environment, disaster, engineering, information, military, and surveying.