{"title":"The impact of temperature variations on the thermal and charring characteristics of laminated bamboo lumber","authors":"Zhaoyan Cui, Ming Xu, Yurong Shen, Liuhui Tu","doi":"10.1007/s00107-024-02069-z","DOIUrl":null,"url":null,"abstract":"<div><p>The fire performance of buildings can be assessed through the thermal and charring characteristics of laminated bamboo lumber (LBL), due to its combustibility properties, which are akin to those of wood. This study employed Thermal Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Hot Disk techniques to ascertain the thermal conductivity, heat flow, and mass loss rate of LBL at elevated temperatures. Thermal conductivity initially rises, then falls, as the temperature increases from 25 °C to 280 °C across both grain directions, peaking at 100 °C. The thermal conductivity ratio of LBL, from parallel to perpendicular to grain, ranges from 1.93 to 4.00. A distinct peak in heat flow of LBL, ranging from 1.00 to 2.23, is observed as the temperature increases from 23 °C to 200 °C. Beyond 200 °C, the mass loss rate of LBL accelerates, driven by the pyrolysis of phenolic resin and decomposition of bamboo cellulose. The normal and nominal charring rates for LBL specimens were established based on the detachment of charring layers at furnace temperatures, adhering to ISO 834 standards. These findings may serve as a foundation for advanced fire performance analysis of LBL structures.</p></div>","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"82 4","pages":"1159 - 1169"},"PeriodicalIF":2.4000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Wood and Wood Products","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00107-024-02069-z","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The fire performance of buildings can be assessed through the thermal and charring characteristics of laminated bamboo lumber (LBL), due to its combustibility properties, which are akin to those of wood. This study employed Thermal Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Hot Disk techniques to ascertain the thermal conductivity, heat flow, and mass loss rate of LBL at elevated temperatures. Thermal conductivity initially rises, then falls, as the temperature increases from 25 °C to 280 °C across both grain directions, peaking at 100 °C. The thermal conductivity ratio of LBL, from parallel to perpendicular to grain, ranges from 1.93 to 4.00. A distinct peak in heat flow of LBL, ranging from 1.00 to 2.23, is observed as the temperature increases from 23 °C to 200 °C. Beyond 200 °C, the mass loss rate of LBL accelerates, driven by the pyrolysis of phenolic resin and decomposition of bamboo cellulose. The normal and nominal charring rates for LBL specimens were established based on the detachment of charring layers at furnace temperatures, adhering to ISO 834 standards. These findings may serve as a foundation for advanced fire performance analysis of LBL structures.
期刊介绍:
European Journal of Wood and Wood Products reports on original research and new developments in the field of wood and wood products and their biological, chemical, physical as well as mechanical and technological properties, processes and uses. Subjects range from roundwood to wood based products, composite materials and structural applications, with related jointing techniques. Moreover, it deals with wood as a chemical raw material, source of energy as well as with inter-disciplinary aspects of environmental assessment and international markets.
European Journal of Wood and Wood Products aims at promoting international scientific communication and transfer of new technologies from research into practice.