{"title":"Application of Bionic Technology in Marine Cruise Equipment: Research Progress and Development Trends","authors":"Kunhui Luo, Lan Yan, Zhiyi Zhu, Zhongqiu Wang, Hongru Wang, Feng Jiang","doi":"10.1007/s42235-024-00483-w","DOIUrl":null,"url":null,"abstract":"<div><p>This article provides an overview of the application of bionic technology in marine cruising equipment, discussing its research progress and future development trends. Marine cruising is a crucial means of gaining insights into the marine environment and conducting scientific research. However, conventional marine cruising equipment faces numerous challenges when dealing with complex and ever-changing marine environments. Bionic technology, as a means of drawing inspiration from the structure and functions of living organisms, offers new approaches and methods to address the challenges faced by marine cruising equipment and has found widespread application. The article primarily focuses on the applications and historical developments of bionic technology in propulsion methods, drag reduction, and surface antifouling. It summarizes the design principles, manufacturing techniques, and optimization methods for marine biomimetic cruising equipment. Finally, this paper analyzes the achievements, challenges, and future directions of bionic technology in marine cruising equipment. The application of bionic technology in marine cruising equipment holds vast potential for development, enabling us to better confront the challenges of marine exploration and research by drawing wisdom from nature and driving advancements in marine science.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 3","pages":"1117 - 1155"},"PeriodicalIF":4.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00483-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This article provides an overview of the application of bionic technology in marine cruising equipment, discussing its research progress and future development trends. Marine cruising is a crucial means of gaining insights into the marine environment and conducting scientific research. However, conventional marine cruising equipment faces numerous challenges when dealing with complex and ever-changing marine environments. Bionic technology, as a means of drawing inspiration from the structure and functions of living organisms, offers new approaches and methods to address the challenges faced by marine cruising equipment and has found widespread application. The article primarily focuses on the applications and historical developments of bionic technology in propulsion methods, drag reduction, and surface antifouling. It summarizes the design principles, manufacturing techniques, and optimization methods for marine biomimetic cruising equipment. Finally, this paper analyzes the achievements, challenges, and future directions of bionic technology in marine cruising equipment. The application of bionic technology in marine cruising equipment holds vast potential for development, enabling us to better confront the challenges of marine exploration and research by drawing wisdom from nature and driving advancements in marine science.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.