Automated Inference of Graph Transformation Rules

Jakob L. Andersen, Akbar Davoodi, Rolf Fagerberg, Christoph Flamm, Walter Fontana, Juri Kolčák, Christophe V. F. P. Laurent, Daniel Merkle, Nikolai Nøjgaard
{"title":"Automated Inference of Graph Transformation Rules","authors":"Jakob L. Andersen, Akbar Davoodi, Rolf Fagerberg, Christoph Flamm, Walter Fontana, Juri Kolčák, Christophe V. F. P. Laurent, Daniel Merkle, Nikolai Nøjgaard","doi":"arxiv-2404.02692","DOIUrl":null,"url":null,"abstract":"The explosion of data available in life sciences is fueling an increasing\ndemand for expressive models and computational methods. Graph transformation is\na model for dynamic systems with a large variety of applications. We introduce\na novel method of the graph transformation model construction, combining\ngenerative and dynamical viewpoints to give a fully automated data-driven model\ninference method. The method takes the input dynamical properties, given as a \"snapshot\" of the\ndynamics encoded by explicit transitions, and constructs a compatible model.\nThe obtained model is guaranteed to be minimal, thus framing the approach as\nmodel compression (from a set of transitions into a set of rules). The\ncompression is permissive to a lossy case, where the constructed model is\nallowed to exhibit behavior outside of the input transitions, thus suggesting a\ncompletion of the input dynamics. The task of graph transformation model inference is naturally highly\nchallenging due to the combinatorics involved. We tackle the exponential\nexplosion by proposing a heuristically minimal translation of the task into a\nwell-established problem, set cover, for which highly optimized solutions\nexist. We further showcase how our results relate to Kolmogorov complexity\nexpressed in terms of graph transformation.","PeriodicalId":501325,"journal":{"name":"arXiv - QuanBio - Molecular Networks","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Molecular Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.02692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The explosion of data available in life sciences is fueling an increasing demand for expressive models and computational methods. Graph transformation is a model for dynamic systems with a large variety of applications. We introduce a novel method of the graph transformation model construction, combining generative and dynamical viewpoints to give a fully automated data-driven model inference method. The method takes the input dynamical properties, given as a "snapshot" of the dynamics encoded by explicit transitions, and constructs a compatible model. The obtained model is guaranteed to be minimal, thus framing the approach as model compression (from a set of transitions into a set of rules). The compression is permissive to a lossy case, where the constructed model is allowed to exhibit behavior outside of the input transitions, thus suggesting a completion of the input dynamics. The task of graph transformation model inference is naturally highly challenging due to the combinatorics involved. We tackle the exponential explosion by proposing a heuristically minimal translation of the task into a well-established problem, set cover, for which highly optimized solutions exist. We further showcase how our results relate to Kolmogorov complexity expressed in terms of graph transformation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图转换规则的自动推理
生命科学领域的数据爆炸式增长,对表现力强的模型和计算方法的需求与日俱增。图变换是一种应用广泛的动态系统模型。我们介绍了一种新颖的图变换模型构建方法,它结合了生成观点和动态观点,提供了一种全自动的数据驱动模型推断方法。该方法将输入的动态属性作为显式转换编码的动态 "快照",并构建一个兼容的模型。所获得的模型保证是最小的,因此该方法被称为模型压缩(从一组转换到一组规则)。压缩允许有损情况,即允许构建的模型表现出输入转换之外的行为,从而暗示输入动态的完成。由于涉及组合学,图变换模型推断任务自然具有很高的挑战性。我们提出了一种启发式的最小化方法,将该任务转化为一个早已存在的问题--集合覆盖,并给出了高度优化的解决方案,从而解决了指数爆炸的问题。我们还进一步展示了我们的结果与以图变换表示的科尔莫哥罗夫复杂性之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-variable control to mitigate loads in CRISPRa networks Some bounds on positive equilibria in mass action networks Non-explosivity of endotactic stochastic reaction systems Limits on the computational expressivity of non-equilibrium biophysical processes When lowering temperature, the in vivo circadian clock in cyanobacteria follows and surpasses the in vitro protein clock trough the Hopf bifurcation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1