Chengji Liu, Yu Chao, Lu Wang, Changhua Zhu, Qingshan Li
{"title":"Parameter optimization of SQCC-CVQKD based on genetic algorithm in the terahertz band","authors":"Chengji Liu, Yu Chao, Lu Wang, Changhua Zhu, Qingshan Li","doi":"10.1088/1612-202x/ad3621","DOIUrl":null,"url":null,"abstract":"Recently, we proposed a continuous variable quantum key distribution (CVQKD) scheme based on simultaneous quantum and classical communication (SQCC) in the terahertz (THz) band. It performs classical modulation and quantum Gaussian modulation at the same coherent pulse at the sending end, and an amplifier is used to amplify and demultiplex the signal at the receiving end. However, the previous study set parameters based on prior knowledge which has significant limitations, and as the previous study showed, parameter selection is a crucial task that directly affects the performance of the system. In this paper, we use the genetic algorithm to optimize the parameter selection, and how the different conditions influence the optimal value of parameters is also analyzed. The simulation results show that the parameter optimized with the algorithm can make the scheme achieve a higher secret key rate which greatly improves the applicability of the SQCC scheme in the THz band. This work demonstrates the effectiveness of the scheme to construct wireless quantum communication networks.","PeriodicalId":17940,"journal":{"name":"Laser Physics Letters","volume":"22 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad3621","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, we proposed a continuous variable quantum key distribution (CVQKD) scheme based on simultaneous quantum and classical communication (SQCC) in the terahertz (THz) band. It performs classical modulation and quantum Gaussian modulation at the same coherent pulse at the sending end, and an amplifier is used to amplify and demultiplex the signal at the receiving end. However, the previous study set parameters based on prior knowledge which has significant limitations, and as the previous study showed, parameter selection is a crucial task that directly affects the performance of the system. In this paper, we use the genetic algorithm to optimize the parameter selection, and how the different conditions influence the optimal value of parameters is also analyzed. The simulation results show that the parameter optimized with the algorithm can make the scheme achieve a higher secret key rate which greatly improves the applicability of the SQCC scheme in the THz band. This work demonstrates the effectiveness of the scheme to construct wireless quantum communication networks.
期刊介绍:
Laser Physics Letters encompasses all aspects of laser physics sciences including, inter alia, spectroscopy, quantum electronics, quantum optics, quantum electrodynamics, nonlinear optics, atom optics, quantum computation, quantum information processing and storage, fiber optics and their applications in chemistry, biology, engineering and medicine.
The full list of subject areas covered is as follows:
-physics of lasers-
fibre optics and fibre lasers-
quantum optics and quantum information science-
ultrafast optics and strong-field physics-
nonlinear optics-
physics of cold trapped atoms-
laser methods in chemistry, biology, medicine and ecology-
laser spectroscopy-
novel laser materials and lasers-
optics of nanomaterials-
interaction of laser radiation with matter-
laser interaction with solids-
photonics